26 research outputs found

    Safety, tolerability, and immunogenicity of influenza vaccination with a high-density microarray patch: Results from a randomized, controlled phase I clinical trial.

    Get PDF
    BACKGROUND: The Vaxxas high-density microarray patch (HD-MAP) consists of a high density of microprojections coated with vaccine for delivery into the skin. Microarray patches (MAPs) offer the possibility of improved vaccine thermostability as well as the potential to be safer, more acceptable, easier to use, and more cost-effective for the administration of vaccines than injection by needle and syringe (N&S). Here, we report a phase I trial using the Vaxxas HD-MAP to deliver a monovalent influenza vaccine that was to the best of our knowledge the first clinical trial to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. METHODS AND FINDINGS: HD-MAPs were coated with a monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/2015 H1N1 haemagglutinin (HA). Between February 2018 and March 2018, 60 healthy adults (age 18-35 years) in Melbourne, Australia were enrolled into part A of the study and vaccinated with either: HD-MAPs delivering 15 μg of A/Singapore/GP1908/2015 H1N1 HA antigen (A-Sing) to the volar forearm (FA); uncoated HD-MAPs; intramuscular (IM) injection of commercially available quadrivalent influenza vaccine (QIV) containing A/Singapore/GP1908/2015 H1N1 HA (15 μg/dose); or IM injection of H1N1 HA antigen (15 μg/dose). After 22 days' follow-up and assessment of the safety data, a further 150 healthy adults were enrolled and randomly assigned to 1 of 9 treatment groups. Participants (20 per group) were vaccinated with HD-MAPs delivering doses of 15, 10, 5, 2.5, or 0 μg of HA to the FA or 15 μg HA to the upper arm (UA), or IM injection of QIV. The primary objectives of the study were safety and tolerability. Secondary objectives were to assess the immunogenicity of the influenza vaccine delivered by HD-MAP. Primary and secondary objectives were assessed for up to 60 days post-vaccination. Clinical staff and participants were blind as to which HD-MAP treatment was administered and to administration of IM-QIV-15 or IM-A/Sing-15. All laboratory investigators were blind to treatment and participant allocation. Two further groups in part B (5 participants per group), not included in the main safety and immunological analysis, received HD-MAPs delivering 15 μg HA or uncoated HD-MAPs applied to the forearm. Biopsies were taken on days 1 and 4 for analysis of the cellular composition from the HD-MAP application sites. The vaccine coated onto HD-MAPs was antigenically stable when stored at 40°C for at least 12 months. HD-MAP vaccination was safe and well tolerated; any systemic or local adverse events (AEs) were mild or moderate. Observed systemic AEs were mostly headache or myalgia, and local AEs were application-site reactions, usually erythema. HD-MAP administration of 2.5 μg HA induced haemagglutination inhibition (HAI) and microneutralisation (MN) titres that were not significantly different to those induced by 15 μg HA injected IM (IM-QIV-15). HD-MAP delivery resulted in enhanced humoral responses compared with IM injection with higher HAI geometric mean titres (GMTs) at day 8 in the MAP-UA-15 (GMT 242.5, 95% CI 133.2-441.5), MAP-FA-15 (GMT 218.6, 95% CI 111.9-427.0), and MAP-FA-10 (GMT 437.1, 95% CI 254.3-751.3) groups compared with IM-QIV-15 (GMT 82.8, 95% CI 42.4-161.8), p = 0.02, p = 0.04, p < 0.001 for MAP-UA-15, MAP-FA-15, and MAP-FA-10, respectively. Higher titres were also observed at day 22 in the MAP-FA-10 (GMT 485.0, 95% CI 301.5-780.2, p = 0.001) and MAP-UA-15 (367.6, 95% CI 197.9-682.7, p = 0.02) groups compared with the IM-QIV-15 group (GMT 139.3, 95% CI 79.3-244.5). Results from a panel of exploratory immunoassays (antibody-dependent cellular cytotoxicity, CD4+ T-cell cytokine production, memory B cell (MBC) activation, and recognition of non-vaccine strains) indicated that, overall, Vaxxas HD-MAP delivery induced immune responses that were similar to, or higher than, those induced by IM injection of QIV. The small group sizes and use of a monovalent influenza vaccine were limitations of the study. CONCLUSIONS: Influenza vaccine coated onto the HD-MAP was stable stored at temperatures up to 40°C. Vaccination using the HD-MAP was safe and well tolerated and resulted in immune responses that were similar to or significantly enhanced compared with IM injection. Using the HD-MAP, a 2.5 μg dose (1/6 of the standard dose) induced HAI and MN titres similar to those induced by 15 μg HA injected IM. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (ANZCTR.org.au), trial ID 108 ACTRN12618000112268/U1111-1207-3550

    Microarray patch delivery of un-adjuvanted influenza vaccine induces potent and broad-spectrum immune responses in a phase I clinical trial

    Get PDF
    Microarray patches (MAPs) offer the possibility of improved vaccine thermostability and dose-sparing potential as well as the potential to be safer, more acceptable, easier to use and more cost-effective for the administration of vaccines than injection by needle and syringe. Here, we report a phase I trial (ACTRN12618000112268/ U1111-1207-3550) using the Vaxxas high-density MAP (HD-MAP) to deliver a monovalent influenza vaccine to evaluate the safety, tolerability, and immunogenicity of lower doses of influenza vaccine delivered by MAPs. To the best of our knowledge, this is the first study determining dose reduction potential using MAPs in humans. Monovalent, split inactivated influenza virus vaccine containing A/Singapore/GP1908/ 2015 [H1N1] haemagglutinin (HA) was delivered by MAP into the volar forearm or upper arm, or given intramuscularly (IM) once. Participants (20 per group) received HD-MAPs delivering doses of 15, 10, 5, 2.5 or 0 µg of HA or an IM injection of quadrivalent influenza vaccine (QIV). In two subgroups, skin biopsies were taken on days 1 (pre-vaccination) and 4 for analysis of the cellular composition from the HD-MAP application sites. All laboratory investigators were blind to treatment and participant allocation. The primary objectives of the study were safety and tolerability. Secondary objectives included immunogenicity and dose de-escalation assessments of the influenza vaccine delivered by HD-MAP. Both objectives were assessed for up to 60 days post-vaccination. Please click Download on the upper right corner to see the full abstract

    Physician privacy concerns when disclosing patient data for public health purposes during a pandemic influenza outbreak

    Get PDF
    Background: Privacy concerns by providers have been a barrier to disclosing patient information for public health\ud purposes. This is the case even for mandated notifiable disease reporting. In the context of a pandemic it has been\ud argued that the public good should supersede an individual’s right to privacy. The precise nature of these provider\ud privacy concerns, and whether they are diluted in the context of a pandemic are not known. Our objective was to\ud understand the privacy barriers which could potentially influence family physicians’ reporting of patient-level\ud surveillance data to public health agencies during the Fall 2009 pandemic H1N1 influenza outbreak.\ud Methods: Thirty seven family doctors participated in a series of five focus groups between October 29-31 2009.\ud They also completed a survey about the data they were willing to disclose to public health units. Descriptive\ud statistics were used to summarize the amount of patient detail the participants were willing to disclose, factors that\ud would facilitate data disclosure, and the consensus on those factors. The analysis of the qualitative data was based\ud on grounded theory.\ud Results: The family doctors were reluctant to disclose patient data to public health units. This was due to concerns\ud about the extent to which public health agencies are dependable to protect health information (trusting beliefs),\ud and the possibility of loss due to disclosing health information (risk beliefs). We identified six specific actions that\ud public health units can take which would affect these beliefs, and potentially increase the willingness to disclose\ud patient information for public health purposes.\ud Conclusions: The uncertainty surrounding a pandemic of a new strain of influenza has not changed the privacy\ud concerns of physicians about disclosing patient data. It is important to address these concerns to ensure reliable\ud reporting during future outbreaks.University of Ottawa Open Access Author Fun

    The development and validation of a scoring tool to predict the operative duration of elective laparoscopic cholecystectomy

    Get PDF
    Background: The ability to accurately predict operative duration has the potential to optimise theatre efficiency and utilisation, thus reducing costs and increasing staff and patient satisfaction. With laparoscopic cholecystectomy being one of the most commonly performed procedures worldwide, a tool to predict operative duration could be extremely beneficial to healthcare organisations. Methods: Data collected from the CholeS study on patients undergoing cholecystectomy in UK and Irish hospitals between 04/2014 and 05/2014 were used to study operative duration. A multivariable binary logistic regression model was produced in order to identify significant independent predictors of long (> 90 min) operations. The resulting model was converted to a risk score, which was subsequently validated on second cohort of patients using ROC curves. Results: After exclusions, data were available for 7227 patients in the derivation (CholeS) cohort. The median operative duration was 60 min (interquartile range 45–85), with 17.7% of operations lasting longer than 90 min. Ten factors were found to be significant independent predictors of operative durations > 90 min, including ASA, age, previous surgical admissions, BMI, gallbladder wall thickness and CBD diameter. A risk score was then produced from these factors, and applied to a cohort of 2405 patients from a tertiary centre for external validation. This returned an area under the ROC curve of 0.708 (SE = 0.013, p  90 min increasing more than eightfold from 5.1 to 41.8% in the extremes of the score. Conclusion: The scoring tool produced in this study was found to be significantly predictive of long operative durations on validation in an external cohort. As such, the tool may have the potential to enable organisations to better organise theatre lists and deliver greater efficiencies in care

    Safety, Tolerability, and Immunogenicity of Measles and Rubella Vaccine Delivered with a High-Density Microarray Patch: Results from a Randomized, Partially Double-Blinded, Placebo-Controlled Phase I Clinical Trial

    No full text
    Microarray patches (MAPs) have the potential to be a safer, more acceptable, easier-to-use, and more cost-effective means for the administration of vaccines than injection by needle and syringe. Here, we report findings from a randomized, partially double-blinded, placebo-controlled Phase I trial using the Vaxxas high-density MAP (HD-MAP) to deliver a measles rubella (MR) vaccine. Healthy adults (N = 63, age 18–50 years) were randomly assigned 1:1:1:1 to four groups: uncoated (placebo) HD-MAPs, low-dose MR HD-MAPs (~3100 median cell-culture infectious dose [CCID50] measles, ~4300 CCID50 rubella); high-dose MR-HD-MAPs (~9300 CCID50 measles, ~12,900 CCID50 rubella); or a sub-cutaneous (SC) injection of an approved MR vaccine, MR-Vac (≥1000 CCID50 per virus). The MR vaccines were stable and remained viable on HD-MAPs when stored at 2–8 °C for at least 24 months. When MR HD-MAPs stored at 2–8 °C for 24 months were transferred to 40 °C for 3 days in a controlled temperature excursion, loss of potency was minimal, and MR HD-MAPs still met World Health Organisation (WHO) specifications. MR HD-MAP vaccination was safe and well-tolerated; any systemic or local adverse events (AEs) were mild or moderate. Similar levels of binding and neutralizing antibodies to measles and rubella were induced by low-dose and high-dose MR HD-MAPs and MR-Vac. The neutralizing antibody seroconversion rates on day 28 after vaccination for the low-dose HD-MAP, high-dose HD-MAP and MR-Vac groups were 37.5%, 18.8% and 35.7%, respectively, for measles, and 37.5%, 25.0% and 35.7%, respectively, for rubella. Most participants were seropositive for measles and rubella antibodies at baseline, which appeared to negatively impact the number of participants that seroconverted to vaccines delivered by either route. The data reported here suggest HD-MAPs could be a valuable means for delivering MR-vaccine to hard-to-reach populations and support further development. Clinical trial registry number: ACTRN12621000820808

    Characterisation of indomethacin and nifedipine using variable-temperature solid-state NMR

    No full text
    We have characterised the stable polymorphic forms of two drug molecules, indomethacin (1) and nifedipine (2) by C-13 CPMAS NMR and the resonances have been assigned. The signal for the C-Cl carbon of indomethacin has been studied as a function of applied magnetic field, and the observed bandshapes have been simulated. Variable-temperature H-1 relaxation measurements of static samples have revealed a T-1 rho minimum for indomethacin at 17.8 degrees C. The associated activation energy is 38 kJ mol(-1). The relevant motion is probably an internal rotation and it is suggested that this involves the C-OCH3 group. Since the two drug compounds are potential candidates for formulation in the amorphous state, we have examined quench-cooled melts in detail by variable-temperature C-13 and H-1 NMR. There is a change in slope for TH1H at the glass transition temperature (T-g) for indomethacin, but this occurs a few degrees below Tg for and T-1 rho(H) nifedipine, which is perhaps relevant to the lower real-time stability of the amorphous form for the latter compound. Comparison of relaxation time data for the crystalline and amorphous forms of each compound reveals a greater difference for nifedipine than for indomethacin, which again probably relates to real-time stabilities. Recrystallisation of the two drugs has been followed by proton bandshape measurements at higher temperatures. It is shown that, under the conditions of the experiments, recrystallisation of nifedipine can be detected already at 70 degrees C, whereas this does not occur until 110 degrees C for indomethacin. The effect of crushing the amorphous samples has been studied by C-12 NMR; nifedipine recrystallises but indomethacin does not. The results were supported by DSC, powder XRD, FTIR and solution-state NMR measurements. Copyright (c) 2005 John Wiley & Sons, Ltd

    Safety, tolerability, acceptability and immunogenicity of an influenza vaccine delivered to human skin by a novel high-density microprojection array patch (Nanopatch™)

    No full text
    Background: Injection using needle and syringe (N&S) is the most widely used method for vaccination, but requires trained healthcare workers. Fear of needles, risk of needle-stick injury, and the need to reconstitute lyophilised vaccines, are also drawbacks. The Nanopatch (NP) is a microarray skin patch comprised of a high-density array of microprojections dry-coated with vaccine that is being developed to address these shortcomings. Here we report a randomised, partly-blinded, placebo-controlled trial that represents the first use in humans of the NP to deliver a vaccine. Methods: Healthy volunteers were vaccinated once with one of the following: (1) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg haemagglutinin (HA) per dose), applied to the volar forearm (NP-HA/FA), n = 15; (2) NPs coated with split inactivated influenza virus (A/California/07/2009 [H1N1], 15 µg HA per dose), applied to the upper arm (NP-HA/UA), n = 15; (3) Fluvax® 2016 containing 15 µg of the same H1N1 HA antigen injected intramuscularly (IM) into the deltoid (IM-HA/D), n = 15; (4) NPs coated with excipients only, applied to the volar forearm (NP-placebo/FA), n = 5; (5) NPs coated with excipients only applied to the upper arm (NP-placebo/UA), n = 5; or (6) Saline injected IM into the deltoid (IM-placebo/D), n = 5. Antibody responses at days 0, 7, and 21 were measured by haemagglutination inhibition (HAI) and microneutralisation (MN) assays. Findings: NP vaccination was safe and acceptable; all adverse events were mild or moderate. Most subjects (55%) receiving patch vaccinations (HA or placebo) preferred the NP compared with their past experience of IM injection with N&S (preferred by 24%). The antigen-vaccinated groups had statistically higher HAI titres at day 7 and 21 compared with baseline (p  0.05), although the group sizes were small. The geometric mean HAI titres at day 21 for the NP-HA/FA, NP-HA/UA and IM-HA/D groups were: 335 (189–593 95% CI), 160 (74–345 95% CI), and 221 (129–380 95% CI) respectively. A similar pattern of responses was seen with the MN assays. Application site reactions were mild or moderate, and more marked with the influenza vaccine NPs than with the placebo or IM injection. Interpretation: Influenza vaccination using the NP appeared to be safe, and acceptable in this first time in humans study, and induced similar immune responses to vaccination by IM injection

    Reduced responsiveness of rat mesenteric resistance artery smooth muscle to phenylephrine and calcium following myocardial infarction

    No full text
    1. We evaluated responses of peripheral resistance arterial smooth muscle to α(1)-adrenoceptor stimulation in a rat model of heart failure in relation to neurohumoral changes, wall structure, receptor density and cellular calcium handling. 2. Plasma samples and third order mesenteric artery side-branches were obtained from Wistar rats after induction of left ventricular infarction (MI) or sham surgery. Vessels were denuded of endothelium, sympathectomized, depleted of neuropeptides, and mounted in a myograph for recording of isometric force development in response to calcium, agonist and high potassium. Also, the morphology of these preparations was determined. Separate vessel segments were used in radioligand binding assays with [(3)H]-prazosin. 3. At 1 week after MI, circulating plasma levels of adrenaline, angiotensin II, atrial natriuretic factor (ANF) and vasopressin were significantly elevated. At 5 weeks only a significant elevation of ANF persisted. 4. At 5 weeks after MI, the structure of the vessels and responsiveness to high potassium or Bay K 8466 (10(−6) mol l(−1)) were not modified. Yet, at this stage, sensitivity to phenylephrine was increased (pD(2): 6.24±0.04 vs 5.98±0.04 for controls) while maximal contractile responses to phenylephrine in the presence of 2.5 mmol l(−1) calcium (2.26±0.28 vs 3.53±0.34 N m(−1)) and the sensitivity to calcium in the presence of phenylephrine (pD(2): 2.81±0.22 vs 3.74±0.16) were reduced. Responses to the agonist in calcium-free solution and the calcium sensitivity in the presence of 125 mmol l(−1) potassium or of phorbol myristate acetate (PMA, 10(−6) mol l(−1)) were not altered. 5. At 5 weeks after MI, the density of prazosin binding sites was not reduced (4.04±1.40 vs 2.29±0.21 fmol μg(−1) DNA in controls). 6. In conclusion, myocardial infarction leads in the rat to a reduction of contractile responses of mesenteric resistance arterial smooth muscle to α(1)-adrenoceptor stimulation. This seems to involve impaired agonist-stimulated calcium influx
    corecore