242 research outputs found

    The magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing with vision depends on the eye-visual target distance

    Get PDF
    The purpose of the present experiment was to investigate whether, with vision, the magnitude of the effect of calf muscles fatigue on postural control during bipedal quiet standing depends on the eye-visual target distance. Twelve young university students were asked to stand upright as immobile as possible in three visual conditions (No vision, Vision 1m and Vision 4m) executed in two conditions of No fatigue and Fatigue of the calf muscles. Centre of foot pressure displacements were recorded using a force platform. Similar increased variances of the centre of foot pressure displacements were observed in the fatigue relative to the No fatigue condition for both the No vision and Vision 4m conditions. Interestingly, in the vision 1m condition, fatigue yielded: (1) a similar increased variance of the centre of foot pressure displacements to those observed in the No vision and Vision 4m conditions along the medio-lateral axis and (2) a weaker destabilising effect relative to the No vision and Vision 4m conditions along the antero-posterior axis. These results evidence that the ability to use visual information for postural control during bipedal quiet standing following calf muscles fatigue is dependent on the eye-visual target distance. More largely, in the context of the multisensory control of balance, the present findings suggest that the efficiency of the sensory reweighting of visual sensory cues as the neuro-muscular constraints acting on the subject change is critically linked with the quality of the information the visual system obtains

    In-silico insights on the prognostic potential of immune cell infiltration patterns in the breast lobular epithelium

    Get PDF
    Scattered inflammatory cells are commonly observed in mammary gland tissue, most likely in response to normal cell turnover by proliferation and apoptosis, or as part of immunosurveillance. In contrast, lymphocytic lobulitis (LLO) is a recurrent inflammation pattern, characterized by lymphoid cells infiltrating lobular structures, that has been associated with increased familial breast cancer risk and immune responses to clinically manifest cancer. The mechanisms and pathogenic implications related to the inflammatory microenvironment in breast tissue are still poorly understood. Currently, the definition of inflammation is mainly descriptive, not allowing a clear distinction of LLO from physiological immunological responses and its role in oncogenesis remains unclear. To gain insights into the prognostic potential of inflammation, we developed an agent-based model of immune and epithelial cell interactions in breast lobular epithelium. Physiological parameters were calibrated from breast tissue samples of women who underwent reduction mammoplasty due to orthopedic or cosmetic reasons. The model allowed to investigate the impact of menstrual cycle length and hormone status on inflammatory responses to cell turnover in the breast tissue. Our findings suggested that the immunological context, defined by the immune cell density, functional orientation and spatial distribution, contains prognostic information previously not captured by conventional diagnostic approaches. Several studies provided conclusive evidence that a delicate balance between mammary epithelial cell proliferation and apoptosis regulates homeostasis in the healthy breast tissue 1-7. After menarche, and in the absence of pregnancy, the adult female mammary gland is subjected to cyclic fluctuations depending on hormonal stimulation 1,8. In response to such systemic hormonal changes, the breast epithelium undergoes a tightly regulated sequence of cell proliferation and apoptosis during each ovarian/menstrual cycle 1-3. The peak of epithelial cell proliferation has been reported to occur during the luteal phase, suggesting a synergistic influence of steroid hormones, such as estrogen and progesterone 2-5. In turn, the peak of apoptotic activity would be expected in response to decreasing hormone levels towards the end of the menstrual cycle 2-5. However, recent histologic findings indicate that apoptosis reaches its maximum levels in the middle of the luteal phase, although there is also a peak at about the third day of the menstrual cycle 6,7. Experimental measurements of cell turnover, i.e. programmed cell death and proliferation, demonstrated that an imbalance between the mitotic and apoptotic activity might lead to malignant transformation of epithelial cells and tumorigenic processes 9-11. Indeed, excessive cell proliferation promotes accumulation of DNA damage due to insufficient timely repair and mutations 12,13. There is also recent evidence that hormones suppress effective DNA repair and alter DNA damage response (DDR) 13-15

    Postural control during quiet standing following cervical muscular fatigue: effects of changes in sensory inputs

    Full text link
    The purpose of the present experiment was to investigate the effects of cervical muscular fatigue on postural control during quiet standing under different conditions of reliability and/or availability of somatosensory inputs from the plantar soles and the ankles and visual information. To this aim, 14 young healthy adults were asked to sway as little as possible in three sensory conditions (No vision, No vision-Foam support and Vision) executed in two conditions of No fatigue and Fatigue of the scapula elevator muscles. Centre of foot pressure (CoP) displacements were recorded using a force platform. Results showed that (1) the cervical muscular fatigue yielded increased CoP displacements in the absence of vision, (2) this effect was more accentuated when somatosensation was degraded by standing on a foam surface and (3) the availability of vision allowed the individuals to suppress this destabilising effect. On the whole, these findings not only stress the importance of intact cervical neuromuscular function on postural control during quiet standing, but also suggest a reweigthing of sensory cues in balance control following cervical muscular fatigue by increasing the reliance on the somatosensory inputs from the plantar soles and the ankles and visual information

    Minocycline-induced hypersensitivity syndrome presenting with meningitis and brain edema: a case report

    Get PDF
    <p/> <p>Background</p> <p>Hypersentivity Syndrome (HS) may be a life-threatening condition. It frequently presents with fever, rash, eosinophilia and systemic manifestations. Mortality can be as high as 10% and is primarily due to hepatic failure. We describe what we believe to be the first case of minocycline-induced HS with accompanying lymphocytic meningitis and cerebral edema reported in the literature.</p> <p>Case presentation</p> <p>A 31-year-old HIV-positive female of African origin presented with acute fever, lymphocytic meningitis, brain edema, rash, eosinophilia, and cytolytic hepatitis. She had been started on minocycline for inflammatory acne 21 days prior to the onset of symptoms. HS was diagnosed clinically and after exclusion of infectious causes. Minocycline was withdrawn and steroids were administered from the second day after presentation because of the severity of the symptoms. All signs resolved by the seventh day and steroids were tailed off over a period of 8 months.</p> <p>Conclusion</p> <p>Clinicians should maintain a high index of suspicion for serious adverse reactions to minocycline including lymphocytic meningitis and cerebral edema among HIV-positive patients, especially if they are of African origin. Safer alternatives should be considered for treatment of acne vulgaris. Early recognition of the symptoms and prompt withdrawal of the drug are important to improve the outcome.</p

    Antiviral Therapy for Hepatitis C Virus: Beyond the Standard of Care

    Get PDF
    Hepatitis C virus (HCV) represents a major health burden, with an estimated 180 million chronically infected individuals worldwide. These patients are at increased risk of developing liver cirrhosis and hepatocellular carcinoma. Infection with HCV is the leading cause of liver transplantation in the Western world. Currently, the standard of care (SoC) consists of pegylated interferon alpha (pegIFN-α) and ribavirin (RBV). However this therapy has a limited efficacy and is associated with serious side effects. Therefore more tolerable, highly potent inhibitors of HCV replication are urgently needed. Both Specifically Targeted Antiviral Therapy for HCV (STAT-C) and inhibitors that are believed to interfere with the host-viral interaction are discussed

    Dose-Dependent Immunomodulation of Human Dendritic Cells by the Probiotic Lactobacillus rhamnosus Lcr35

    Get PDF
    The response of the immune system to probiotics remains controversial. Some strains modulate the cytokine production of dendritic cells (DCs) in vitro and induce a regulatory response, while others induce conversely a pro-inflammatory response. These strain-dependent effects are thought to be linked to specific interactions between bacteria and pattern recognition receptors. We investigated the effects of a well characterized probiotic strain, Lactobacillus rhamnosus Lcr35, on human monocyte-derived immature DCs, using a wide range of bacterial concentrations (multiplicity of infection, MOI, from 0.01 to 100). DNA microarray and qRT-PCR analysis showed that the probiotic induced a large-scale change in gene expression (nearly 1,700 modulated genes, with 3-fold changes), but only with high doses (MOI, 100). The upregulated genes were mainly involved in immune response and identified a molecular signature of inflammation according to the model of Torri. Flow cytometry analysis also revealed a dose-dependent maturation of the DC membrane phenotype, until DCs reached a semi-mature state, with an upregulation of the membrane expression of CD86, CD83, HLA-DR and TLR4, associated with a down-regulation of DC-SIGN, MR and CD14. Measurement of the DC-secreted cytokines showed that Lcr35 induced a strong dose-dependent increase of the pro-Th1/Th17 cytokine levels (TNFα, IL-1β, IL-12p70, IL-12p40 and IL-23), but only a low increase in IL-10 concentration. The probiotic L. rhamnosus Lcr35 therefore induce a dose-dependent immunomodulation of human DCs leading, at high doses, to the semi-maturation of the cells and to a strong pro-inflammatory effect. These results contribute to a fuller understanding of the mechanism of action of this probiotic, and thus of its potential clinical indications in the treatment of either infectious or IgE-dependent allergic diseases

    Graph-based description of tertiary lymphoid organs at single-cell level

    Get PDF
    Our aim is to complement observer-dependent approaches of immune cell evaluation in microscopy images with reproducible measures for spatial composition of lymphocytic infiltrates. Analyzing such patterns of inflammation is becoming increasingly important for therapeutic decisions, for example in transplantation medicine or cancer immunology. We developed a graph-based assessment of lymphocyte clustering in full whole slide images. Based on cell coordinates detected in the full image, a Delaunay triangulation and distance criteria are used to build neighborhood graphs. The composition of nodes and edges are used for classification, e.g. using a support vector machine. We describe the variability of these infiltrates on CD3/CD20 duplex staining in renal biopsies of long-term functioning allografts, in breast cancer cases, and in lung tissue of cystic fibrosis patients. The assessment includes automated cell detection, identification of regions of interest, and classification of lymphocytic clusters according to their degree of organization. We propose a neighborhood feature which considers the occurrence of edges with a certain type in the graph to distinguish between phenotypically different immune infiltrates. Our work addresses a medical need and provides a scalable framework that can be easily adjusted to the requirements of different research questions

    Virulence Potential and Genomic Mapping of the Worldwide Clone Escherichia coli ST131

    Get PDF
    Recently, the worldwide propagation of clonal CTX-M-15-producing Escherichia coli isolates, namely ST131 and O25b:H4, has been reported. Like the majority of extra-intestinal pathogenic E. coli isolates, the pandemic clone ST131 belongs to phylogenetic group B2, and has recently been shown to be highly virulent in a mouse model, even though it lacks several genes encoding key virulence factors (Pap, Cnf1 and HlyA). Using two animal models, Caenorhabditis elegans and zebrafish embryos, we assessed the virulence of three E. coli ST131 strains (2 CTX-M-15- producing urine and 1 non-ESBL-producing faecal isolate), comparing them with five non-ST131 B2 and a group A uropathogenic E. coli (UPEC). In C. elegans, the three ST131 strains showed intermediate virulence between the non virulent group A isolate and the virulent non-ST131 B2 strains. In zebrafish, the CTX-M-15-producing ST131 UPEC isolates were also less virulent than the non-ST131 B2 strains, suggesting that the production of CTX-M-15 is not correlated with enhanced virulence. Amongst the non-ST131 B2 group isolates, variation in pathogenic potential in zebrafish embryos was observed ranging from intermediate to highly virulent. Interestingly, the ST131 strains were equally persistent in surviving embryos as the non-ST131-group B2 strains, suggesting similar mechanisms may account for development of persistent infection. Optical maps of the genome of the ST131 strains were compared with those of 24 reference E. coli strains. Although small differences were seen within the ST131 strains, the tree built on the optical maps showed that these strains belonged to a specific cluster (86% similarity) with only 45% similarity with the other group B2 strains and 25% with strains of group A and D. Thus, the ST131 clone has a genetic composition that differs from other group B2 strains, and appears to be less virulent than previously suspected

    Perfusate Metabolomics Content and Expression of Tubular Transporters During Human Kidney Graft Preservation by Hypothermic Machine Perfusion

    Get PDF
    Background. Ischemia-related injury during the preimplantation period impacts kidney graft outcome. Evaluating these lesions by a noninvasive approach before transplantation could help us to understand graft injury mechanisms and identify potential biomarkers predictive of graft outcomes. This study aims to determine the metabolomic content of graft perfusion fluids and its dependence on preservation time and to explore whether tubular transporters are possibly involved in metabolomics variations. Methods. Kidneys were stored on hypothermic perfusion machines. We evaluated the metabolomic profiles of perfusion fluids (n=35) using liquid chromatography coupled with tandem mass spectrometry and studied the transcriptional expression of tubular transporters on preimplantation biopsies (n=26), both collected at the end of graft perfusion. We used univariate and multivariate analyses to assess the impact of perfusion time on these parameters and their relationship with graft outcome. Results. Seventy-two metabolites were found in preservation fluids at the end of perfusion, of which 40% were already present in the native conservation solution. We observed an increase of 23 metabolites with a longer perfusion time and a decrease of 8. The predictive model for time-dependent variation of metabolomics content showed good performance (R2=76%, Q2=54%, accuracy=41%, and permutation test significant). Perfusion time did not affect the mRNA expression of transporters. We found no correlation between metabolomics and transporters expression. Neither the metabolomics content nor transporter expression was predictive of graft outcome. Conclusions. Our results call for further studies, focusing on both intra- and extratissue metabolome, to investigate whether transporter alterations can explain the variations observed in the preimplantation period
    • …
    corecore