
The magnitude of the effect of calf muscles fatigue on

postural control during bipedal quiet standing with

vision depends on the eye-visual target distance.

Nicolas Vuillerme, Cyril Burdet, Brice Isableu, Sylvain Demetz

To cite this version:

Nicolas Vuillerme, Cyril Burdet, Brice Isableu, Sylvain Demetz. The magnitude of the ef-
fect of calf muscles fatigue on postural control during bipedal quiet standing with vision de-
pends on the eye-visual target distance.. Gait and Posture, Elsevier, 2006, 24 (2), pp.169-72.
<10.1016/j.gaitpost.2005.07.011>. <hal-00250339>

HAL Id: hal-00250339

https://hal.archives-ouvertes.fr/hal-00250339

Submitted on 11 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
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Abstract 

 

The purpose of the present experiment was to investigate whether, with vision, the magnitude 

of the effect of calf muscles fatigue on postural control during bipedal quiet standing depends 

on the eye–visual target distance. Twelve young university students were asked to stand 

upright as immobile as possible in three visual conditions (No vision, Vision 1 m and Vision 

4 m) executed in two conditions of No fatigue and Fatigue of the calf muscles. Centre of foot 

pressure displacements were recorded using a force platform. Similar increased variances of 

the centre of foot pressure displacements were observed in the fatigue relative to the No 

fatigue condition for both the No vision and Vision 4 m conditions. Interestingly, in the vision 

1 m condition, fatigue yielded: (1) a similar increased variance of the centre of foot pressure 

displacements to those observed in the No vision and Vision 4 m conditions along the medio-

lateral axis and (2) a weaker destabilising effect relative to the No vision and Vision 4 m 

conditions along the antero-posterior axis. These results evidence that the ability to use visual 

information for postural control during bipedal quiet standing following calf muscles fatigue 

is dependent on the eye–visual target distance. More largely, in the context of the 

multisensory control of balance, the present findings suggest that the efficiency of the sensory 

reweighting of visual sensory cues as the neuro-muscular constraints acting on the subject 

change is critically linked with the quality of the information the visual system obtains. 

 

Key-words. Postural control; Muscular Fatigue; Vision; Eye-visual target distance; Centre of 

foot pressure. 
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1. Introduction 

It is now well established that postural control of human beings is achieved by 

integrating sensory information from the visual, vestibular and somatosensory systems (e.g., 

[1]). Of these three inputs, the visual system is certainly the one that has received the most 

attention (e.g., [2], for a recent review). Our current understanding of visual stabilisation of 

postural sway is based on how effectively body oscillations can be detected relative to 

stationary environmental surfaces. A standard argument is that with increasing distance or 

decreasing size of a fixated target, the magnitude of the retinal displacement caused by the 

head sway during fixation of the target declines, yielding a deterioration of visual stabilisation 

(e.g., [3,4]). As a result, a nearby visual target has the potential to be more efficient in 

reducing postural sway than a target at some distance (e.g., [3–5]).  

In recent years, the effects of localized calf muscles fatigue on postural control during 

bipedal quiet standing have received a growing interest [6–10]. While the abovementioned 

studies are conclusive in reporting a destabilising effect of fatigue in the absence of vision, 

this is not the case when visual information is available. On the one hand, Corbeil et al. [6] 

observed similar destabilizing effects of muscular fatigue with and without vision. On the 

other hand, Ledin et al. [7] showed that vision was able to substantially limit, along the 

antero-posterior axis mainly, the increased postural sway induced by the calf muscles fatigue. 

At this point, it is important to mention that it seems rather difficult to make specific 

comparisons across experiments due to the nature of the fatigue protocol (bloc design-training 

program consisting of the execution of 100 repeated plantar-flexions starting at 75% of 

subjects’ maximal workload with a reverse pyramidal technique in which the load was 

diminished gradually whenever subjects were unable to perform plantar-flexion + maximal 

isometric contractions [6] versus toe-lift exercise until maximal exhaustion repeated prior to 

each trial [7]), experimental procedure (modified Romberg protocol [6] versus normal stance 
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with feet at an angle about 308 open to the front and the heals approximately 3 cm apart [7]), 

dependent variables analysed (e.g., centre of foot pressure (CoP) displacements [6] versus 

variance of body sway [7]) or the duration of the data analysed (60 s [6] versus 30 s [7]). It is 

possible these conflicting results to also stem from the different eye–visual target distances 

used in these experiments. Indeed, when vision was available, while ‘‘subjects were instructed 

to fixate a point located 4m in front of them’’ (p. 93) in the Corbeil et al. experiment [6], they 

‘‘focused on a mark placed on the wall about 1.5 m in front of the subject’’ (p. 185) in Ledin 

et al. experiment [7]. 

Within this context, the purpose of the present experiment was to investigate whether, 

with vision, the magnitude of the effect of calf muscles fatigue on postural control during 

quiet standing depends on the distance to the visual target. Considering that (1) the influence 

of visual information on postural control decreases as the eye–visual target distance increases 

(e.g., [3–5]) and (2) the abovementioned results of Ledin et al. [7] and Corbeil et al. [6], we 

expected that (1) a nearby visual target would allow individuals to reduce postural sway 

following calf muscles fatigue with a stabilising effect mostly occurring in the sagittal plane 

[7], whereas a distant visual target would not [6]. 

 

2. Methods 

 

2.1. Subjects 

Twelve university students from the Department of Sports Sciences at the University 

of Savoie (age = 21.9 ± 1.7 years; body weight = 63.2 ± 6.6 kg; height = 173.1 ± 6.8 cm; 

mean ± S.D.) with no history of injury or pathology to either lower extremity and normal or 

corrected-to normal visual acuity voluntarily participated in the experiment. They gave their 
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informed consent to the experimental procedure as required by the Helsinki declaration 

(1964) and the local Ethics Committee. 

 

2.2. Apparatus 

A force platform (Equi+, model PF01, Aix les Bains, France), constituted of an 

aluminium plate (800 mm each side) laying on three uniaxial load cells, was used to measure 

the CoP displacements. Signals from the force-platform were sampled at 64 Hz, amplified and 

converted from analogue to digital form. 

 

2.3. Task and procedure 

Subjects stood barefoot on the force platform in a natural position (feet abducted at 

30°, heels separated by 3 cm), their arms hanging loosely by their sides. Subject’s task was to 

sway as little as possible in three visual conditions of No vision, Vision 1 m and Vision 4 m. 

In the No vision condition, they were asked to close their eyes and to keep their gaze in a 

straight-ahead direction. In the Vision 1 m and Vision 4 m conditions, they were asked to 

stare at the intersection of a black cross (20 cm × 25 cm) placed onto the white wall distant 1 

m and 4 m in front of them, at the eyes level, respectively. 

These three visual conditions were performed under two experimental conditions. The 

No fatigue condition served as a control condition. For each visual condition (No vision, 

Vision 1 m and Vision 4 m), subjects performed three 32-s trials. The order of presentation of 

these three visual conditions was randomised over subjects. In the fatigue condition, the 

measurements were performed immediately after a fatiguing procedure. Its aim was to induce 

a muscular fatigue in the ankle plantar-flexor of both legs until maximal exhaustion, using a 

protocol similar to that used by [7]. Subjects were asked to perform toe-lifts as many times as 

possible following the beat of a metronome (40 beats/min). Verbal encouragement was given 
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to ensure that subjects worked maximally. The fatigue level was reached when subjects were 

no more able to complete the exercise. To ensure that balance measurement in the Fatigue 

condition was obtained in a real fatigued state: (1) the fatiguing exercise took place beside the 

force platform to minimise the time between the exercise-induced fatiguing exercise and the 

measurement of the CoP displacements and (2) the fatiguing exercise was repeated prior to 

each trial [7–10]. Three additional trials for each visual condition were executed, for a total of 

18 trials. 

 

2.4. Data analysis 

CoP displacements were processed through a space-time domain analysis including 

the calculation of the variances of positions along the medio-lateral and antero-posterior axes. 

This dependent variable provides a measure of amplitude variability of the CoP displacements 

around the mean position, over the sampled period, along each axis. 

 

2.5. Statistical analysis 

The means of the three trials performed in each of the six experimental conditions 

were used for statistical analyses. Two fatigues (No fatigue versus Fatigue) × three three 

visions (No vision versus Vision 1 m versus Vision 4 m) × two axes (Medio-lateral versus 

Antero-posterior) analyses of variance with repeated measures on all factors were applied to 

the data. Post hoc analyses (L.S.D. test) were used whenever necessary. Level of significance 

was set at 0.05. 

 

3. Results 

Analysis of the variance of the CoP displacements showed main effects of Fatigue (F 

(1,11) = 10.93, P < 0.01), Vision (F (1,22) = 5.83, P < 0.01) and Axis (F (1,11) = 5.34, P < 
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0.05). It also showed a significant two way-interaction of Vision × Axis (F (1,22) = 3.47, P < 

0.05) and a significant three-way interaction of Fatigue × Vision × Axis (F (1,22) = 3.49, P < 

0.05).  

As illustrated in Fig. 1, the decomposition of the three-way interaction into its simple 

main effects indicated similar increased variances of the CoP displacements in the Fatigue 

relative to the No fatigue condition for both the No vision (left panel) and Vision 4 m 

conditions (right panel) (Ps < 0.01 and <0.001, for the medio-lateral and anteroposterior axes, 

respectively). In the Vision 1 m condition (middle panel), fatigue yielded (1) a similar 

increased variance of the CoP displacements to those observed in the No vision and Vision 4 

m conditions along the medio-lateral axis (P < 0.01) and (2) a weaker destabilising effect 

relative to the No vision and Vision 4 m conditions along the anteroposterior axis (P < 0.05). 

------------------------------------ 

Please insert Figure 1 about here 

------------------------------------ 

 

4. Discussion 

Given the contradictory findings recently published in the literature [6,7], the present 

experiment was designed to clarify whether or not visual sensory inputs may compensate for 

the destabilising effects of calf muscles fatigue during bipedal quiet standing. More precisely, 

we proposed here to check whether these discrepancies might be attributable to differences 

between the eye–visual target distances used. To this aim, CoP displacements were measured 

in 12 healthy subjects, using a force-platform, before and after the performance of a fatiguing 

calf muscle exercise under three different visual conditions: no vision, and vision of a black 

cross placed at a distance of either 1 m or 4 m ahead. 
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In the absence of vision (Fig. 1, left panel), results showed a decreased postural 

control following calf muscles fatigue, corroborating previous reports [6–10]. If one considers 

postural control as a perceptual-motor process (e.g., [11]), these features could stem from an 

alteration of the functionality of the sensory proprioceptive (e.g., [12]) and/or motor systems 

(e.g., [13]) caused by the fatiguing exercise at the ankle joint. This suggestion is supported by 

larger destabilising effects observed along the anteroposterior than medio-lateral axis, when 

considering what the fatiguing exercise involved in terms of joints and tendons receptors 

stimulation and muscles recruitment (i.e., ankle plantar-flexors muscles). 

When vision is available, results suggested that the magnitude of the effect of calf 

muscles fatigue is dependent on the eye–visual target distance. This observation not only 

confirms our hypothesis, but also resolves previous divergences regarding the interaction 

between vision and localised fatigue of calf muscles on postural control during quiet standing. 

On the one hand, a distant visual target did not allow individuals to limit the destabilising 

effect induced by a localised fatigue of calf muscles (Vision 4 mcondition, Fig. 1, right panel), 

in accordance with previous results of Corbeil et al. [6].On the other hand, as recently 

reported byLedin et al. [7], a nearby visual target was shown to reduce postural sway 

following calf muscles fatigue with a stabilising effect mostly occurring in the sagittal plane 

(Vision 1 m condition, Fig. 1, middle panel). As stated in the introduction, these differences 

could stem fromthe greater resolution in the detection of head motion in the Vision 1 m than 

Vision 4 m condition, through the geometric consequence of greater retinal shifts of the visual 

image with a decreased eye–visual target distance. With regard to the hypothesis of an 

alteration of ankle proprioceptive information induced by muscular fatigue [12], this 

interpretation is reminiscent with previous results [3–5]. When the reliability of ankle 

proprioceptive information was reduced by standing on a compliant foam support, visual 

stabilisation was evidenced to be more efficient with close than distant visual targets. Other 
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authors also showed that individuals were able to take advantage of a nearby visual target to 

reduce the destabilising effect of a relative muscles weakness of postural muscles – 

experimentally induced by loading healthy subjects with extra weight additional body weight 

– observed without vision [7,14]. These findings are in accordance with the results observed 

in the Vision 1 m condition, assuming the decreased force generating capacity at the ankle 

joint induced by the fatiguing exercise (e.g., [13]). Finally, it is important to mention that the 

stabilising effect of vision under conditions of impaired ankle sensory-motor function is not 

limited to the eye–visual target distance. Rather, other physical and physiological visual 

parameters, including visual acuity [3,15], contrast sensitivity [15], optical blur [3,16,17], 

central and peripheral visual fields [3,18], motion parallax [19,20], static and dynamic visual 

motion cues [21] were shown to affect postural control when standing on a compliant foam 

support. In the present experiment, these parameters have been controlled to ensure the results 

observed through this study to only be due to the manipulated variable, i.e., the eye–visual 

target distance. 

In conclusion, results of the present experiment confirmed a decreased postural control 

consecutive to calf muscles fatigue during quiet bipedal standing in the absence of vision. 

More interestingly, results also evidenced that the ability to use visual information to 

compensate for this destabilising effect is dependent on the eye–visual target distance. In the 

context of the multisensory control of balance, this suggests that the efficiency of the sensory 

reweighting of visual sensory cues as the neuro-muscular constraints acting on the subject 

change (e.g., [22,23]) is critically linked with the quality of the information the visual system 

obtains. More largely, the present results also corroborate previous findings about sensory-

motor adaptation processes, i.e., any deficit in one sensory modality is often compensated for 

by the enhancement of the sensory weights of all the other intact sensory modalities (i.e., not 
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only vision), but that this obviously depends on the relevance of the other sensory cues 

available in a given environmental context. 
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Figure captions 

 

Figure 1. Mean and standard error of the mean of the variances of the centre of foot pressure 

displacements obtained in the two conditions of No fatigue and Fatigue, the three visual 

conditions of No vision, Vision 1 m and Vision 4 m, along the medio-lateral and antero-

posterior axes. The two axes are presented with different symbols: medio-lateral (black 

diamond) and antero-posterior (white circle). Left, middle and right panels represent No 

vision, Vision 1 m and Vision 4 m, respectively. 
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Figure 1 
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