10 research outputs found

    Marine silicon cycle through the Cenozoic

    Get PDF
    Silicon (Si) cycle is one of Earth's major biogeochemical cycles. Furthermore, the dissolved form of Si (DSi) is an essential nutrient for both terrestrial and marine ecosystems. DSi ultimately derives from the slow process of chemical weathering of silicate minerals, a mechanism that consumes carbon dioxide, and therefore participates in regulating Earth's climate over geologic timescales. Si is delivered to the ocean mostly by rivers and will be used by a variety of organisms (e.g. diatoms, siliceous sponges, radiolarians, and silicoflagellates) that precipitate DSi into an amorphous form (biogenic silica, BSi) and control the export of Si out of seawaters. While the modern Si cycle and the processes controlling it are becoming better and better understood, its evolution through Earth's history are still poorly constrained.Hence, this thesis aims at shedding more light on the evolution of the marine Si cycle on millennial to million-years timescales. To do so, we investigated the Si isotopic composition (expressed as δ30Si) of siliceous microfossils recovered from marine sediments. The analysis of δ30Si from the remains of marine diatoms, radiolarians, and siliceous sponges is a powerful tool to reconstruct several facets of the oceanic Si cycle in the past.On millennial timescales, the marine Si cycle is mostly dominated by variations in biologic productivity in the surface ocean and riverine inputs of DSi. On the other hand, on million-years time scales, the marine Si cycle appears to be mostly controlled by oceanic circulation. Further, the analysis of sponge δ30Si, performed during this thesis, allowed us to reconstruct the concentrations of DSi in the bottom waters in the North Atlantic and Equatorial Pacific. Our results indicate that contrary to previous hypotheses, the ocean did not experience a rapid decline in oceanic DSi content during the Paleogene (65.5 to 23.03 Ma). Conversely, we show that the North Atlantic already had low DSi concentrations, similar to today, during the early Cenozoic, whereas the Equatorial Pacific has become progressively enriched in DSi since at least 35 Ma.Overall, although research into the evolution of the ocean Si cycle is still at an early stage, the work carried out in this thesis fills some of the existing knowledge gaps regarding the development of the marine Si cycle through geologic times

    Recovery from multi‐millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity

    Get PDF
    Enhanced nutrient input and warming have led to the development of low oxygen (hypoxia) in coastal waters globally. For many coastal areas, insight into redox conditions prior to human impact is lacking. Here, we reconstructed bottom water redox conditions and sea surface temperatures (SSTs) for the coastal Stockholm Archipelago over the past 3000 yr. Elevated sedimentary concentrations of molybdenum indicate (seasonal) hypoxia between 1000b.c.e.and 1500c.e. Biomarker-based (TEX86) SST reconstructions indicate that the recovery from hypoxia after 1500c.e.coincided with a period of significant cooling (similar to 2 degrees C), while human activity in the study area, deduced from trends in sedimentary lead and existing paleobotanical and archeological records, had significantly increased. A strong increase in sedimentary lead and zinc, related to more intense human activity in the 18(th)and 19(th)century, and the onset of modern warming precede the return of hypoxia in the Stockholm Archipelago. We conclude that climatic cooling played an important role in the recovery from natural hypoxia after 1500c.e., but that eutrophication and warming, related to modern human activity, led to the return of hypoxia in the 20(th)century. Our findings imply that ongoing global warming may exacerbate hypoxia in the coastal zone of the Baltic Sea

    Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time

    Get PDF
    Biosilicification has driven variation in the global Si cycle over geologic time. The evolution of different eukaryotic lineages that convert dissolved Si (DSi) into mineralized structures (higher plants, siliceous sponges, radiolarians, and diatoms) has driven a secular decrease in DSi in the global ocean leading to the low DSi concentrations seen today. Recent studies, however, have questioned the timing previously proposed for the DSi decreases and the concentration changes through deep time, which would have major implications for the cycling of carbon and other key nutrients in the ocean. Here, we combine relevant genomic data with geological data and present new hypotheses regarding the impact of the evolution of biosilicifying organisms on the DSi inventory of the oceans throughout deep time. Although there is no fossil evidence for true silica biomineralization until the late Precambrian, the timing of the evolution of silica transporter genes suggests that bacterial silicon-related metabolism has been present in the oceans since the Archean with eukaryotic silicon metabolism already occurring in the Neoproterozoic. We hypothesize that biological processes have influenced oceanic DSi concentrations since the beginning of oxygenic photosynthesis

    The silicon isotopic composition of the Ganges and its tributaries

    Get PDF
    The silicon isotopic composition (View the MathML source) of the headwaters of the Ganges River, in the Himalaya, ranged from +0.49±0.01‰ to +2.17±0.04‰ at dissolved silicon (DSi) concentrations of 38 to 239 μM. Both the concentration and isotopic composition of DSi in the tributaries increased between the highest elevations to where the Ganges leaves the Himalayas at Rishikesh. The tributaries exhibit a linear correlation between View the MathML source and DSi that may represent mixing between a low DSi, low View the MathML source (e.g., 40 μM, +0.5‰) component potentially reflecting fractionation during adsorption of a small fraction of silicon onto iron oxides and a high DSi, high View the MathML source component (e.g., 240 μM, +1.7‰) produced during higher intensity weathering with a greater proportional sequestration of weathered silicon into secondary minerals or biogenic silica. On the Ganges alluvial plain, in the Ganges and the Yamuna, Gomati, and their tributaries, DSi ranged from 122 to 218 μM while View the MathML source ranged from +1.03±0.03‰ to +2.46±0.06‰. Highest values of View the MathML source occurred in the Gomati and its tributaries. In general, the lower DSi and higher View the MathML source of DSi in these rivers suggests control of both by removal of DSi by secondary mineral formation and/or biogenic silica production. A simple 1-dimensional model with flow through a porous medium is introduced and provides a useful framework for understanding these results

    Impact of human disturbance on the biogeochemical silicon cycle in a coastal sea revealed by silicon isotopes

    No full text
    Biogeochemical silicon (Si) cycling in coastal systems is highly influenced by anthropogenic perturbations in recent decades. Here, we present a systematic study on the distribution of stable Si isotopes of dissolved silicate (δ30SiDSi) in a highly eutrophic coastal system, the Baltic Sea. Besides the well-known processes, diatom production and dissolution regulating δ30SiDSi values in the water column, we combined field data with a box model to examine the role of human disturbances on Si cycling in the Baltic Sea. Results reveal that (1) damming led to increased δ30SiDSi values in water but had little impacts on their vertical distribution; (2) decrease in saltwater inflow due to enhanced thermal stratification had negligible impacts on the δ30SiDSi distribution. An atypical vertical distribution of δ30SiDSi with higher values in deep water (1.57–1.95‰) relative to those in surface water (1.24–1.68‰) was observed in the central basin. Model results suggest the role of enhanced biogenic silica (BSi) deposition and subsequently regenerated dissolved silicate (DSi) flux from sediments. Specifically, eutrophication enhances diatom production, resulting in elevated exports of highly fractionated BSi to deep water and sediments. In situ sedimentary geochemical processes, such as authigenic clay formation, further fractionate Si isotopes and increase pore-water δ30SiDSi values, which then leads to pore-water DSi flux carrying higher δ30SiDSi compositions into deep water. Our findings provide new quantitative information on how the isotope-based Si cycle responds to human perturbations in coastal seas and shed lights on shifts of Si export to open ocean

    Silicon isotopes data in sponge spicules and radiolarian tests from ODP hole 1051B over the PETM

    No full text
    This dataset contains stable Si isotope values from radiolarian tests and sponge spicules analyzed on MC-ICP-MS and SIMS. These are in association with a study aiming at investigating the changes to the Si cycle during the Paleocene-Eocene Thermal Maximum from siliceous microfossils from ODP hole 1051B

    Recovery from multi-millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity

    Get PDF
    Enhanced nutrient input and warming have led to the development of low oxygen (hypoxia) in coastal waters globally. For many coastal areas, insight into redox conditions prior to human impact is lacking. Here, we reconstructed bottom water redox conditions and sea surface temperatures (SSTs) for the coastal Stockholm Archipelago over the past 3000 yr. Elevated sedimentary concentrations of molybdenum indicate (seasonal) hypoxia between 1000 b.c.e. and 1500 c.e. Biomarker-based (TEX86) SST reconstructions indicate that the recovery from hypoxia after 1500 c.e. coincided with a period of significant cooling (∼ 2°C), while human activity in the study area, deduced from trends in sedimentary lead and existing paleobotanical and archeological records, had significantly increased. A strong increase in sedimentary lead and zinc, related to more intense human activity in the 18th and 19th century, and the onset of modern warming precede the return of hypoxia in the Stockholm Archipelago. We conclude that climatic cooling played an important role in the recovery from natural hypoxia after 1500 c.e., but that eutrophication and warming, related to modern human activity, led to the return of hypoxia in the 20th century. Our findings imply that ongoing global warming may exacerbate hypoxia in the coastal zone of the Baltic Sea

    Recovery from multi-millennial natural coastal hypoxia in the Stockholm Archipelago, Baltic Sea, terminated by modern human activity

    No full text
    Enhanced nutrient input and warming have led to the development of low oxygen (hypoxia) in coastal waters globally. For many coastal areas, insight into redox conditions prior to human impact is lacking. Here, we reconstructed bottom water redox conditions and sea surface temperatures (SSTs) for the coastal Stockholm Archipelago over the past 3000 yr. Elevated sedimentary concentrations of molybdenum indicate (seasonal) hypoxia between 1000 b.c.e. and 1500 c.e. Biomarker-based (TEX86) SST reconstructions indicate that the recovery from hypoxia after 1500 c.e. coincided with a period of significant cooling (∼ 2°C), while human activity in the study area, deduced from trends in sedimentary lead and existing paleobotanical and archeological records, had significantly increased. A strong increase in sedimentary lead and zinc, related to more intense human activity in the 18th and 19th century, and the onset of modern warming precede the return of hypoxia in the Stockholm Archipelago. We conclude that climatic cooling played an important role in the recovery from natural hypoxia after 1500 c.e., but that eutrophication and warming, related to modern human activity, led to the return of hypoxia in the 20th century. Our findings imply that ongoing global warming may exacerbate hypoxia in the coastal zone of the Baltic Sea

    Biosilicification Drives a Decline of Dissolved Si in the Oceans through Geologic Time

    No full text
    Biosilicification has driven variation in the global Si cycle over geologic time. The evolution of different eukaryotic lineages that convert dissolved Si (DSi) into mineralized structures (higher plants, siliceous sponges, radiolarians, and diatoms) has driven a secular decrease in DSi in the global ocean leading to the low DSi concentrations seen today. Recent studies, however, have questioned the timing previously proposed for the DSi decreases and the concentration changes through deep time, which would have major implications for the cycling of carbon and other key nutrients in the ocean. Here, we combine relevant genomic data with geological data and present new hypotheses regarding the impact of the evolution of biosilicifying organisms on the DSi inventory of the oceans throughout deep time. Although there is no fossil evidence for true silica biomineralization until the late Precambrian, the timing of the evolution of silica transporter genes suggests that bacterial silicon-related metabolism has been present in the oceans since the Archean with eukaryotic silicon metabolism already occurring in the Neoproterozoic. We hypothesize that biological processes have influenced oceanic DSi concentrations since the beginning of oxygenic photosynthesis

    Enrichment of dissolved silica in the deep equatorial Pacific during the Eocene-Oligocene

    Get PDF
    Silicon isotope ratios (expressed as δ30Si) in marine microfossils can provide insights into silica cycling over geologic time. Here we used δ30Si of sponge spicules and radiolarian tests from the Paleogene Equatorial Transect (Ocean Drilling Program Leg 199) spanning the Eocene and Oligocene (~50–23 Ma) to reconstruct dissolved silica (DSi) concentrations in deep waters and to examine upper ocean δ30Si. The δ30Si values range from 3.16 to +0.18‰ and from 0.07 to +1.42‰ for the sponge and radiolarian records, respectively. Both records show a transition toward lower δ30Si values around 37 Ma. The shift in radiolarian δ30Si is interpreted as a consequence of changes in the δ30Si of source DSi to the region. The decrease in sponge δ30Si is interpreted as a transition from low DSi concentrations to higher DSi concentrations, most likely related to the shift toward a solely Southern Ocean source of deep water in the Pacific during the Paleogene that has been suggested by results from paleoceanographic tracers such as neodymium and carbon isotopes. Sponge δ30Si provides relatively direct information about the nutrient content of deep water and is a useful complement to other tracers of deep water circulation in the oceans of the past.
    corecore