282 research outputs found

    Deuteration as an evolutionary tracer in massive-star formation

    Full text link
    Theory predicts, and observations confirm, that the column density ratio of a molecule containing D to its counterpart containing H can be used as an evolutionary tracer in the low-mass star formation process. Since it remains unclear if the high-mass star formation process is a scaled-up version of the low-mass one, we investigated whether the relation between deuteration and evolution can be applied to the high-mass regime. With the IRAM-30m telescope, we observed rotational transitions of N2D+ and N2H+ and derived the deuterated fraction in 27 cores within massive star-forming regions understood to represent different evolutionary stages of the massive-star formation process. Results. Our results clearly indicate that the abundance of N2D+ is higher at the pre-stellar/cluster stage, then drops during the formation of the protostellar object(s) as in the low-mass regime, remaining relatively constant during the ultra-compact HII region phase. The objects with the highest fractional abundance of N2D+ are starless cores with properties very similar to typical pre-stellar cores of lower mass. The abundance of N2D+ is lower in objects with higher gas temperatures as in the low-mass case but does not seem to depend on gas turbulence. Our results indicate that the N2D+-to-N2H+ column density ratio can be used as an evolutionary indicator in both low- and high-mass star formation, and that the physical conditions influencing the abundance of deuterated species likely evolve similarly during the processes that lead to the formation of both low- and high-mass stars.Comment: Accepted by A&AL, 4 pages, 2 figures, 2 appendices (one for Tables, one for additional figures

    The L1157-B1 astrochemical laboratory: testing the origin of DCN

    Get PDF
    L1157-B1 is the brightest shocked region of the large-scale molecular outflow, considered the prototype of chemically rich outflows, being the ideal laboratory to study how shocks affect the molecular gas. Several deuterated molecules have been previously detected with the IRAM 30m, most of them formed on grain mantles and then released into the gas phase due to the shock. We aim to observationally investigate the role of the different chemical processes at work that lead to formation the of DCN and test the predictions of the chemical models for its formation. We performed high-angular resolution observations with NOEMA of the DCN(2-1) and H13CN(2-1) lines to compute the deuterated fraction, Dfrac(HCN). We detected emission of DCN(2-1) and H13CN(2-1) arising from L1157-B1 shock. Dfrac(HCN) is ~4x103^{-3} and given the uncertainties, we did not find significant variations across the bow-shock. Contrary to HDCO, whose emission delineates the region of impact between the jet and the ambient material, DCN is more widespread and not limited to the impact region. This is consistent with the idea that gas-phase chemistry is playing a major role in the deuteration of HCN in the head of the bow-shock, where HDCO is undetected as it is a product of grain-surface chemistry. The spectra of DCN and H13CN match the spectral signature of the outflow cavity walls, suggesting that their emission result from shocked gas. The analysis of the time dependent gas-grain chemical model UCL-CHEM coupled with a C-type shock model shows that the observed Dfrac(HCN) is reached during the post-shock phase, matching the dynamical timescale of the shock. Our results indicate that the presence of DCN in L1157-B1 is a combination of gas-phase chemistry that produces the widespread DCN emission, dominating in the head of the bow-shock, and sputtering from grain mantles toward the jet impact region.Comment: Accepted for publication in A&A. 7 pages, 5 Figures, 1 Tabl

    Temperature and kinematics of protoclusters with intermediate and high-mass stars: the case of IRAS 05345+3157

    Full text link
    We have mapped at small spatial scales the temperature and the velocity field in the protocluster associated with IRAS 05345+3157, which contains both intermediate-/high-mass protostellar candidates and starless condensations, and is thus an excellent location to investigate the role of massive protostars on protocluster evolution. We observed the ammonia (1,1) and (2,2) inversion transitions with the VLA. Ammonia is the best thermometer for dense and cold gas, and the observed transitions have critical densities able to trace the kinematics of the intracluster gaseous medium. The ammonia emission is extended and distributed in two filamentary structures. The starless condensations are colder than the star-forming cores, but the gas temperature across the whole protocluster is higher (by a factor of ~1.3-1.5) than that measured typically in both infrared dark clouds and low-mass protoclusters. The non-thermal contribution to the observed line broadening is at least a factor of 2 larger than the expected thermal broadening even in starless condensations, contrary to the close-to-thermal line widths measured in low-mass quiescent dense cores. The NH3-to-N2H+ abundance ratio is greatly enhanced (a factor of 10) in the pre--stellar core candidates, probably due to freeze-out of most molecular species heavier than He. The more massive and evolved objects likely play a dominant role in the physical properties and kinematics of the protocluster. The high level of turbulence and the fact that the measured core masses are larger than the expected thermal Jeans masses indicate that turbulence likely was an important factor in the initial fragmentation of the parental clump.Comment: 13 pages (with Appendix), 11 figure

    The NH2D/NH3 ratio toward pre-protostellar cores around the UCHII region in IRAS 20293+3952

    Get PDF
    The deuterium fractionation, Dfrac, has been proposed as an evolutionary indicator in pre-protostellar and protostellar cores of low-mass star-forming regions. We investigate Dfrac, with high angular resolution, in the cluster environment surrounding the UCHII region IRAS 20293+3952. We performed high angular resolution observations with the IRAM Plateau de Bure Interferometer (PdBI) of the ortho-NH2D 1_{11}-1_{01} line at 85.926 GHz and compared them with previously reported VLA NH3 data. We detected strong NH2D emission toward the pre-protostellar cores identified in NH3 and dust emission, all located in the vicinity of the UCHII region IRAS 20293+3952. We found high values of Dfrac~0.1-0.8 in all the pre-protostellar cores and low values, Dfrac<0.1, associated with young stellar objects. The high values of Dfrac in pre-protostellar cores could be indicative of evolution, although outflow interactions and UV radiation could also play a role.Comment: 5 pages, 3 figures. Accepted for publication in Astronomy and Astrophysics Letter

    Broad N2H+ emission towards the protostellar shock L1157-B1

    Full text link
    We present the first detection of N2H+ towards a low-mass protostellar outflow, namely the L1157-B1 shock, at about 0.1 pc from the protostellar cocoon. The detection was obtained with the IRAM 30-m antenna. We observed emission at 93 GHz due to the J = 1-0 hyperfine lines. The analysis of the emission coupled with the HIFI CHESS multiline CO observations leads to the conclusion that the observed N2H+(1-0) line originates from the dense (> 10^5 cm-3) gas associated with the large (20-25 arcsec) cavities opened by the protostellar wind. We find a N2H+ column density of few 10^12 cm-2 corresponding to an abundance of (2-8) 10^-9. The N2H+ abundance can be matched by a model of quiescent gas evolved for more than 10^4 yr, i.e. for more than the shock kinematical age (about 2000 yr). Modelling of C-shocks confirms that the abundance of N2H+ is not increased by the passage of the shock. In summary, N2H+ is a fossil record of the pre-shock gas, formed when the density of the gas was around 10^4 cm-3, and then further compressed and accelerated by the shock.Comment: ApJ, in pres

    First interferometric study of enhanced N-fractionation in N2_{2}H+^{+}: the high-mass star-forming region IRAS 05358+3543

    Get PDF
    Nitrogen (N) fractionation is used as a tool to search for a link between the chemical history of the Solar System and star-forming regions. A large variation of 14^{14}N/15^{15}N is observed towards different astrophysical sources, and current chemical models cannot reproduce it. With the advent of high angular resolution radiotelescopes it is now possible to search for N-fractionation at core scales. We present IRAM NOEMA observations of the J=1-0 transition of N2_{2}H+^{+}, 15^{15}NNH+^{+} and N15^{15}NNH+^{+} towards the high-mass protocluster IRAS 05358+3543. We find 14^{14}N/15^{15}N ratios that span from \sim100 up to \sim220 and these values are lower or equal than those observed with single-dish observations towards the same source. Since N-fractionation changes across the studied region, this means that it is regulated by local environmental effects. We find also the possibility, for one of the four cores defined in the protocluster, to have a more abundant 15^{15}NNH+^{+} with respect to N15^{15}NNH+^{+}. This is another indication that current chemical models may be missing chemical reactions or may not take into account other mechanisms, like photodissociation or grain surface chemistry, that could be important.Comment: 19 pages, 8 figures, 6 tables, 3 appendices Accepted in Monthly Notices of the Royal Astronomical Society Letter

    Dense gas in IRAS 20343+4129: an ultracompact HII region caught in the act of creating a cavity

    Get PDF
    The intermediate- to high-mass star-forming region IRAS 20343+4129 is an excellent laboratory to study the influence of high- and intermediate-mass young stellar objects on nearby starless dense cores, and investigate for possible implications in the clustered star formation process. We present 3 mm observations of continuum and rotational transitions of several molecular species (C2H, c-C3H2, N2H+, NH2D) obtained with the Combined Array for Research in Millimetre-wave Astronomy, as well as 1.3 cm continuum and NH3 observations carried out with the Very Large Array, to reveal the properties of the dense gas. We confirm undoubtedly previous claims of an expanding cavity created by an ultracompact HII region associated with a young B2 zero-age main sequence (ZAMS) star. The dense gas surrounding the cavity is distributed in a filament that seems squeezed in between the cavity and a collimated outflow associated with an intermediate-mass protostar. We have identified 5 millimeter continuum condensations in the filament. All of them show column densities consistent with potentially being the birthplace of intermediate- to high-mass objects. These cores appear different from those observed in low-mass clustered environments in sereval observational aspects (kinematics, temperature, chemical gradients), indicating a strong influence of the most massive and evolved members of the protocluster. We suggest a possible scenario in which the B2 ZAMS star driving the cavity has compressed the surrounding gas, perturbed its properties and induced the star formation in its immediate surroundings.Comment: 17 pages, 13 figures. Accepted for publication in Monthly Notices of the Royal Astronomical Society (Main Journal

    Widespread Molecular Outflows in the Infrared Dark Cloud G28.37+0.07: Indications of Orthogonal Outflow-Filament Alignment

    Full text link
    We present ALMA CO(2-1) observations toward a massive infrared dark cloud G28.37+0.07. The ALMA data reveal numerous molecular (CO) outflows with a wide range of sizes throughout the cloud. Sixty-two 1.3 mm continuum cores were identified to be driving molecular outflows. We have determined the position angle in the plane-of-sky of 120 CO outflow lobes and studied their distribution. We find that the distribution of the plane-of-sky outflow position angles peaks at about 100 degree, corresponding to a concentration of outflows with an approximately east-west direction. For most outflows, we have been able to estimate the plane-of-sky angle between the outflow axis and the filament that harbors the protostar that powers the outflow. Statistical tests strongly indicate that the distribution of outflow-filament orientations is consistent with most outflow axes being mostly orthogonal to their parent filament in 3D. Such alignment may result from filament fragmentation or continuous mass transportation from filament to the embedded protostellar core. The latter is suggested by recent numerical studies with moderately strong magnetic fields.Comment: 4 figures, 1 table, accepted by Ap

    Core Emergence in a Massive Infrared Dark Cloud: A Comparison Between Mid-IR Extinction and 1.3 mm Emission

    Get PDF
    Stars are born from dense cores in molecular clouds. Observationally, it is crucial to capture the formation of cores in order to understand the necessary conditions and rate of the star formation process. The {\it Atacama Large Mm/sub-mm Array} (ALMA) is extremely powerful for identifying dense gas structures, including cores, at mm wavelengths via their dust continuum emission. Here we use ALMA to carry out a survey of dense gas and cores in the central region of the massive (105M\sim10^5\:M_\odot) Infrared Dark Cloud (IRDC) G28.37+0.07. The observation consists of a mosaic of 86 pointings of the 12m-array and produces an unprecedented view of the densest structures of this IRDC. In this first paper about this data set, we focus on a comparison between the 1.3 mm continuum emission and a mid-infrared (MIR) extinction map of the IRDC. This allows estimation of the "dense gas" detection probability function (DPF), i.e., as a function of the local mass surface density, Σ\Sigma, for various choices of thresholds of mm continuum emission to define "dense gas". We then estimate the dense gas mass fraction, fdgf_{\rm dg}, in the central region of the IRDC and, via extrapolation with the DPF and the known Σ\Sigma probability distribution function, to the larger-scale surrounding regions, finding values of about 5\% to 15\% for the fiducial choice of threshold. We argue that this observed dense gas is a good tracer of the protostellar core population and, in this context, estimate a star formation efficiency per free-fall time in the central IRDC region of ϵff\epsilon_{\rm ff}\sim10\%, with approximately a factor of two systematic uncertainties.Comment: 11 pages, 4 figures, 1 table, accepted by ApJL, comments welcom
    corecore