24 research outputs found

    Fast self-reconfigurable embedded system on Spartan-3

    Get PDF
    Many image-processing algorithms require several stages to be processed that cannot be resolved by embedded microprocessors in a reasonable time, due to their high-computational cost. A set of dedicated coprocessors can accelerate the resolution of these algorithms, alt hough the main drawback is the area needed for their implementation. The main advantage of a reconfigurable system is that several coprocessors designed to perform different operations can be mapped on the same area in a time-multiplexed way. This work presents the architecture of an embedded system composed of a microprocessor and a run-time reconfigurable coprocessor, mapped on Spartan-3, the low-cost family of Xilinx FPGAs. Designing reconfigurable systems on Spartan-3 requires much design effort, since unlike higher cost families of Xilinx FPGAs, this device does not officially support partial reconfiguration. In order to overcome this drawback, the paper also describes the main steps used in the design flow to obtain a successful design. The main goal of the presented architecture is to reduce the coprocessor reconfiguration time, as well as accelerate image-processing algorithms. The experimental results demonstrate significant improvement in both objectives. The reconfiguration rate nearly achieves 320 Mb/s which is far superior to th e previous related works.Peer ReviewedPostprint (published version

    Acceleration of Complex Algorithms on a Fast Reconfigurable Embedded System on Spartan-3

    Get PDF
    Complex algorithms usually require several computation stages. Many embedded microprocessors have not enough computational performance to resolve these algorithms in a reasonable time, so dedicated coprocessors accelerate them although the main drawback is the area devoted to them. A reconfigurable coprocessor can drastically reduce the area, since it accommodates a set of coprocessors whose execution is multiplexed on time, although the reconfiguration speed reduces the overall system performance. Although self-reconfigurable systems are possible on Spartan-3 FPGAs, it requires a hard design task due to the lack of software and hardware support available on higher-cost families. This paper describes the architecture of a fast self-reconfigurable embedded system mapped on Spartan-3, used as computation platform to solve a complex algorithm, such as the image-processing carried out in a fingerprint biometric algorithm. In order to reduce the reconfiguration time, the system uses our custom-made memory and reconfiguration controllers. Moreover, the dynamic coprocessor can access directly to external memory through our memory controller to improve processing time.Peer ReviewedPostprint (published version

    An Indigenous Measure of Social Desirability Across Non-Western Countries

    Get PDF
    Cross-cultural differences in Social Desirability (SD) could be partly due to the nonequivalence of constructs, items, or other challenges of cross-cultural research. We tested to what extent a Mexican, indigenous scale of SD, capturing both positive and negative features of SD, would be useful in other countries. Data were collected in convenience samples in eight countries (Argentina, China, Colombia, Costa Rica, Lebanon, Mexico, Nicaragua, and Spain) in order to test the psychometric accuracy and invariance of the factor structure. Values of Tucker’s factor congruence coefficients (gauging invariance) and tests of the similarity of the cross-country similarity of Cronbach’s alpha (gauging internal consistency) revealed that SD, as measured by this indigenous list, is stable and comparable across cultures. The results are interpreted in a conceptual framework in which SD is viewed as a culturally embedded communication style that people use to integrate successfully into their groups

    Protection of Spanish Ibex (Capra pyrenaica) against Bluetongue Virus Serotypes 1 and 8 in a Subclinical Experimental Infection

    Get PDF
    Many wild ruminants such as Spanish ibex (Capra pyrenaica) are susceptible to Bluetongue virus (BTV) infection, which causes disease mainly in domestic sheep and cattle. Outbreaks involving either BTV serotypes 1 (BTV-1) and 8 (BTV-8) are currently challenging Europe. Inclusion of wildlife vaccination among BTV control measures should be considered in certain species. In the present study, four out of fifteen seronegative Spanish ibexes were immunized with a single dose of inactivated vaccine against BTV-1, four against BTV-8 and seven ibexes were non vaccinated controls. Seven ibexes (four vaccinated and three controls) were inoculated with each BTV serotype. Antibody and IFN-gamma responses were evaluated until 28 days after inoculation (dpi). The vaccinated ibexes showed significant (P<0.05) neutralizing antibody levels after vaccination compared to non vaccinated ibexes. The non vaccinated ibexes remained seronegative until challenge and showed neutralizing antibodies from 7 dpi. BTV RNA was detected in the blood of non vaccinated ibexes from 2 to the end of the study (28 dpi) and in target tissue samples obtained at necropsy (8 and 28 dpi). BTV-1 was successfully isolated on cell culture from blood and target tissues of non vaccinated ibexes. Clinical signs were unapparent and no gross lesions were found at necropsy. Our results show for the first time that Spanish ibex is susceptible and asymptomatic to BTV infection and also that a single dose of vaccine prevents viraemia against BTV-1 and BTV-8 replication

    TRY plant trait database – enhanced coverage and open access

    Get PDF
    Plant traits - the morphological, anatomical, physiological, biochemical and phenological characteristics of plants - determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait‐based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits - almost complete coverage for ‘plant growth form’. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait–environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Hardware accelerators for embedded fingerprint-based personal recognition systems

    Get PDF
    Abstract The development of automatic biometrics-based personal recognition systems is a reality in the current technological age. Not only those operations demanding stringent security levels but also many daily use consumer applications request the existence of computational platforms in charge of recognizing the identity of one individual based on the analysis of his/her physiological and/or behavioural characteristics. The state of the art points out two main open problems in the implementation of such applications: on the one hand, the needed reliability improvement in terms of recognition accuracy, overall security and real-time performances; and on the other hand, the cost reduction of those physical platforms in charge of the processing. This work aims at finding the proper system architecture able to address those limitations of current personal recognition applications. Embedded system solutions based on hardware-software co-design techniques and programmable (and run-time reconfigurable) logic devices under FPGAs or SOPCs is proven to be an efficient alternative to those existing multiprocessor systems based on HPCs, GPUs or PC platforms in the development of that kind of high-performance applications at low costEl desenvolupament de sistemes automàtics de reconeixement personal basats en tècniques biomètriques esdevé una realitat en l’era tecnològica actual. No només aquelles operacions que exigeixen un elevat nivell de seguretat sinó també moltes aplicacions quotidianes demanen l’existència de plataformes computacionals encarregades de reconèixer la identitat d’un individu a partir de l’anàlisi de les seves característiques fisiològiques i/o comportamentals. L’estat de l’art de la tècnica identifica dues limitacions importants en la implementació d’aquest tipus d’aplicacions: per una banda, és necessària la millora de la fiabilitat d’aquests sistemes en termes de precisió en el procés de reconeixement personal, seguretat i execució en temps real; i per altra banda, és necessari reduir notablement el cost dels sistemes electrònics encarregats del processat biomètric. Aquest treball té per objectiu la cerca de l’arquitectura adequada a nivell de sistema que permeti fer front a les limitacions de les aplicacions de reconeixement personal actuals. Es demostra que la proposta de sistemes empotrats basats en tècniques de codisseny hardware-software i dispositius lògics programables (i reconfigurables en temps d’execució) sobre FPGAs o SOPCs resulta ser una alternativa eficient en front d’aquells sistemes multiprocessadors existents basats en HPCs, GPUs o plataformes PC per al desenvolupament d’aquests tipus d’aplicacions que requereixen un alt nivell de prestacions a baix cost.El desarrollo de sistemas automáticos de reconocimiento personal basados en técnicas biométricas se ha convertido en una realidad en la era tecnológica actual. No tan solo aquellas operaciones que requieren un alto nivel de seguridad sino también muchas otras aplicaciones cotidianas exigen la existencia de plataformas computacionales encargadas de verificar la identidad de un individuo a partir del análisis de sus características fisiológicas y/o comportamentales. El estado del arte de la técnica identifica dos limitaciones importantes en la implementación de este tipo de aplicaciones: por un lado, es necesario mejorar la fiabilidad que presentan estos sistemas en términos de precisión en el proceso de reconocimiento personal, seguridad y ejecución en tiempo real; y por otro lado, es necesario reducir notablemente el coste de los sistemas electrónicos encargados de dicho procesado biométrico. Este trabajo tiene por objetivo la búsqueda de aquella arquitectura adecuada a nivel de sistema que permita hacer frente a las limitaciones de los sistemas de reconocimiento personal actuales. Se demuestra que la propuesta basada en sistemas embebidos implementados mediante técnicas de codiseño hardware-software y dispositivos lógicos programables (y reconfigurables en tiempo de ejecución) sobre FPGAs o SOPCs resulta ser una alternativa eficiente frente a aquellos sistemas multiprocesador actuales basados en HPCs, GPUs o plataformas PC en el ámbito del desarrollo de aplicaciones que demandan un alto nivel de prestaciones a bajo cost

    Sawtooth oscillations Understanding and control

    No full text
    Paper at 5. European Tokamak Programme Workshop Toledo (ES) 17-19 Dec 1986SIGLEAvailable from British Library Document Supply Centre- DSC:4672.262(JET-P--87/14) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Requirements on small heat meters from the viewpoint of district heating utilities

    No full text
    Translated from German (Fermaerme Int. 1989 v. 18(1) p. 59-60)Available from British Library Document Supply Centre- DSC:9022.0481(BG-MRS-Trans--15186)T / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    Real-time embedded systems powered by FPGA dynamic partial self-reconfiguration: a case study oriented to biometric recognition applications

    No full text
    This work aims to pave the way for an efficient open system architecture applied to embedded electronic applications to manage the processing of computationally complex algorithms at real-time and low-cost. The target is to define a standard architecture able to enhance the performance-cost trade-off delivered by other alternatives nowadays in the market like general-purpose multi-core processors. Our approach, sustained by hardware/software (HW/SW) co-design and run-time reconfigurable computing, is synthesizable in SRAM-based programmable logic. As proof-of-concept, a run-time partially reconfigurable field-programmable gate array (FPGA) is addressed to carry out a specific application of high-demanding computational power such as an automatic fingerprint authentication system (AFAS). Biometric personal recognition is a good example of compute-intensive algorithm composed of a series of image processing tasks executed in a sequential order. In our pioneer conception, these tasks are partitioned and synthesized first in a series of coprocessors that are then instantiated and executed multiplexed in time on a partially reconfigurable region of the FPGA. The implementation benchmark of the AFAS either as a pure software approach on a PC platform under a dual-core processor (Intel Core 2 Duo T5600 at 1.83 GHz) or as a reconfigurable FPGA co-design (identical algorithm partitioned in HW/SW tasks operating at 50 or 100 MHz on the second smallest device of the Xilinx Virtex-4 LX family) highlights a speed-up of one order of magnitude in favor of the FPGA alternative. These results let point out biometric recognition as a sensible killer application for run-time reconfigurable computing, mainly in terms of efficiently balancing computational power, functional flexibility and cost. Such features, reached through partial reconfiguration, are easily portable today to a broad range of embedded applications with identical system architecture.Peer Reviewe
    corecore