631 research outputs found

    The effects of rear-wheel camber on the kinematics of upper extremity during wheelchair propulsion

    Get PDF
    BACKGROUND: The rear-wheel camber, defined as the inclination of the rear wheels, is usually used in wheelchair sports, but it is becoming increasingly employed in daily propulsion. Although the rear-wheel camber can increase stability, it alters physiological performance during propulsion. The purpose of the study is to investigate the effects of rear-wheel cambers on temporal-spatial parameters, joint angles, and propulsion patterns. METHODS: Twelve inexperienced subjects (22.3±1.6 yr) participated in the study. None had musculoskeletal disorders in their upper extremities. An eight-camera motion capture system was used to collect the three-dimensional trajectory data of markers attached to the wheelchair-user system during propulsion. All participants propelled the same wheelchair, which had an instrumented wheel with cambers of 0°, 9°, and 15°, respectively, at an average velocity of 1 m/s. RESULTS: The results show that the rear-wheel camber significantly affects the average acceleration, maximum end angle, trunk movement, elbow joint movement, wrist joint movement, and propulsion pattern. The effects are especially significant between 0° and 15°. For a 15° camber, the average acceleration and joint peak angles significantly increased (p < 0.01). A single loop pattern (SLOP) was adopted by most of the subjects. CONCLUSIONS: The rear-wheel camber affects propulsion patterns and joint range of motion. When choosing a wheelchair with camber adjustment, the increase of joint movements and the base of support should be taken into consideration

    Tsengwen Reservoir Watershed Hydrological Flood Simulation Under Global Climate Change Using the 20 km Mesh Meteorological Research Institute Atmospheric General Circulation Model (MRI-AGCM)

    Full text link
    Severe rainstorms have occurred more frequently in Taiwan over the last decade. To understand the flood characteristics of a local region under climate change, a hydrological model simulation was conducted for the Tsengwen Reservoir watershed. The model employed was the Integrated Flood Analysis System (IFAS), which has a conceptual, distributed rainfall-runoff analysis module and a GIS data-input function. The high-resolution rainfall data for flood simulation was categorized into three terms: 1979 - 2003 (Present), 2015 - 2039 (Near-future), and 2075 - 2099 (Future), provided by the Meteorological Research Institute atmospheric general circulation model (MRI-AGCM). Ten extreme rainfall (top ten) events were selected for each term in descending order of total precipitation volume. Due to the small watershed area the MRI-AGCM3.2S data was downsized into higher resolution data using the Weather Research and Forecasting Model. The simulated discharges revealed that most of the Near-future and Future peaks caused by extreme rainfall increased compared to the Present peak. These ratios were 0.8 - 1.6 (Near-future/Present) and 0.9 - 2.2 (Future/Present), respectively. Additionally, we evaluated how these future discharges would affect the reservoir¡¦s flood control capacity, specifically the excess water volume required to be stored while maintaining dam releases up to the dam¡¦s spillway capacity or the discharge peak design for flood prevention. The results for the top ten events show that the excess water for the Future term exceeded the reservoir¡¦s flood control capacity and was approximately 79.6 - 87.5% of the total reservoir maximum capacity for the discharge peak design scenario

    Synthesis and structure-activity relationship studies of novel 3,9-substituted α-carboline derivatives with high cytotoxic activity against colorectal cancer cells

    Get PDF
    In our continued focus on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we synthesized a novel series of 3,9-substituted α-carboline derivatives and evaluated the new compounds for antiproliferactive effects. Structure activity relationships revealed that a COOCH or CHOH group at position-3 and substituted benzyl group at position-9 of the α-carboline nucleus were crucial for maximal activity. The most active compound, , showed high levels of cytotoxicity against HL-60, COLO 205, Hep 3B, and H460 cells with IC values of 0.3, 0.49, 0.7, and 0.8 μM, respectively. The effect of compound on the cell cycle distribution demonstrated G2/M arrest in COLO 205 cells. Furthermore, mechanistic studies indicated that compound induced apoptosis by activating death receptor and mitochondria dependent apoptotic signaling pathways in COLO 205 cells. The new 3,9-substituted α-carboline derivatives exhibited excellent anti-proliferative activities, and compound can be used as a promising pro-apoptotic agent for future development of new antitumor agents

    Normal-State Spin Dynamics and Temperature-Dependent Spin Resonance Energy in an Optimally Doped Iron Arsenide Superconductor

    Full text link
    The proximity of superconductivity and antiferromagnetism in the phase diagram of iron arsenides, the apparently weak electron-phonon coupling and the "resonance peak" in the superconducting spin excitation spectrum have fostered the hypothesis of magnetically mediated Cooper pairing. However, since most theories of superconductivity are based on a pairing boson of sufficient spectral weight in the normal state, detailed knowledge of the spin excitation spectrum above the superconducting transition temperature Tc is required to assess the viability of this hypothesis. Using inelastic neutron scattering we have studied the spin excitations in optimally doped BaFe1.85Co0.15As2 (Tc = 25 K) over a wide range of temperatures and energies. We present the results in absolute units and find that the normal state spectrum carries a weight comparable to underdoped cuprates. In contrast to cuprates, however, the spectrum agrees well with predictions of the theory of nearly antiferromagnetic metals, without complications arising from a pseudogap or competing incommensurate spin-modulated phases. We also show that the temperature evolution of the resonance energy follows the superconducting energy gap, as expected from conventional Fermi-liquid approaches. Our observations point to a surprisingly simple theoretical description of the spin dynamics in the iron arsenides and provide a solid foundation for models of magnetically mediated superconductivity.Comment: 8 pages, 4 figures, and an animatio

    Multiple Bony Injuries on Bone Scan in a Case of Unsuspected Child Abuse

    Get PDF
    This case is described of an eleven-month-old infant with lower limbs swelling and the left elbow skeletal malformation following a fall. The radionuclide bone scan was performed to exclude bone infection or congenital skeletal anomaly. The images unexpectedly showed multiple increased radioactive foci throughout the whole body. It was a strong probability of child abuse. All lesions are readily apparent on the following plain film radiographs and MRI

    Design and synthesis of 6,7-methylenedioxy-4-substituted phenylquinolin-2(1H)-one derivatives as novel anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase

    Get PDF
    Novel 6,7-methylenedioxy-4-substituted phenylquinolin-2-one derivatives 12a–n were designed and prepared through an intramolecular cyclization reaction and evaluated for in vitro anticancer activity. Among the synthesized compounds, 6,7-methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin-2(1H)-one (12e) displayed potent cytotoxicity against several different tumor cell lines at a sub-micromolar level. Furthermore, results of fluorescence-activated cell sorting (FACS) analysis suggested that 12e induced cell cycle arrest in the G2/M phase accompanied by apoptosis in HL-60 and H460 cells. This action was confirmed by Hoechst staining and caspase-3 activation. Due to their easy synthesis and remarkable biological activities, 4-phenylquinolin-2(1H)-one analogs (4-PQs) are promising new anticancer leads based on the quinoline scaffold. Accordingly, compound 12e was identified as a new lead compound that merits further optimization and development as an anticancer candidate

    Protective Effect of Caffeic Acid on Paclitaxel Induced Anti-Proliferation and Apoptosis of Lung Cancer Cells Involves NF-κB Pathway

    Get PDF
    Caffeic acid (CA), a natural phenolic compound, is abundant in medicinal plants. CA possesses multiple biological effects such as anti-bacterial and anti-cancer growth. CA was also reported to induce fore stomach and kidney tumors in a mouse model. Here we used two human lung cancer cell lines, A549 and H1299, to clarify the role of CA in cancer cell proliferation. The growth assay showed that CA moderately promoted the proliferation of the lung cancer cells. Furthermore, pre-treatment of CA rescues the proliferation inhibition induced by a sub-IC50 dose of paclitaxel (PTX), an anticancer drug. Western blot showed that CA up-regulated the pro-survival proteins survivin and Bcl-2, the down-stream targets of NF-κB. This is consistent with the observation that CA induced nuclear translocation of NF-κB p65. Our study suggested that the pro-survival effect of CA on PTX-treated lung cancer cells is mediated through a NF-κB signaling pathway. This may provide mechanistic insights into the chemoresistance of cancer calls

    Cancer-Secreted miR-105 Destroys Vascular Endothelial Barriers to Promote Metastasis

    Get PDF
    SummaryCancer-secreted microRNAs (miRNAs) are emerging mediators of cancer-host crosstalk. Here we show that miR-105, which is characteristically expressed and secreted by metastatic breast cancer cells, is a potent regulator of migration through targeting the tight junction protein ZO-1. In endothelial monolayers, exosome-mediated transfer of cancer-secreted miR-105 efficiently destroys tight junctions and the integrity of these natural barriers against metastasis. Overexpression of miR-105 in nonmetastatic cancer cells induces metastasis and vascular permeability in distant organs, whereas inhibition of miR-105 in highly metastatic tumors alleviates these effects. miR-105 can be detected in the circulation at the premetastatic stage, and its levels in the blood and tumor are associated with ZO-1 expression and metastatic progression in early-stage breast cancer
    • …
    corecore