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Abstract

In our continued focus on 1-benzyl-3-(5-hydroxymethyl-2-furyl)indazole (YC-1) analogs, we 

synthesized a novel series of 3,9-substituted α-carboline derivatives and evaluated the new 

compounds for antiproliferactive effects. Structure activity relationships revealed that a COOCH3 

or CH2OH group at position-3 and substituted benzyl group at position-9 of the α-carboline 

nucleus were crucial for maximal activity. The most active compound, 11, showed high levels of 

cytotoxicity against HL-60, COLO 205, Hep3B, and H460 cells with IC50 values of 0.3, 0.49, 0.7, 

and 0.8 μM, respectively. The effect of compound 11 on the cell cycle distribution demonstrated 

G2/M arrest in COLO 205 cells. Furthermore, mechanistic studies indicated that compound 11 
induced apoptosis by activating death receptor and mitochondria dependent apoptotic signaling 

pathways in COLO 205 cells. The new 3,9-substituted α-carboline derivatives exhibited excellent 

anti-proliferative activities, and compound 11 can be used as a promising pro-apoptotic agent for 

future development of new antitumor agents.
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1. Introduction

The benzyl indazole derivative YC-1 (Fig. 1) is a well-known activator of soluble guanylyl 

cyclase (sGC) [1, 2]. Besides its action on sGC, YC-1 also demonstrates multiple activities, 

including antiplatelet action [3], neuroprotection [4], anti-inflammation [5], and 

antiangiogenesis [6]. In recent studies, YC-1 has been investigated for its apoptotic effects 

against cancer cells [7–9]. In our ongoing search for new YC-1-related potential anticancer 

agents, we have developed several YC-1 analogs, such as 3,9-substituted carbazole (A) (Fig. 

1) [10], 3,9-substituted β-carboline (B) (Fig. 1) [11], and 6,9-substituted α-carboline (C) 

derivatives (Fig. 1) [12–14], in which a tricyclic ring system has replaced the bicyclic 

indazole ring system of YC-1. Carbolines have a tricyclic pyridoindole structure and are 

classified as α-, β-, γ-, or δ-carbolines, depending on the position of the pyridine nitrogen 

relative to the indole. The naturally occurring compounds show a range of biological 

activities, prompting the synthesis and study of related derivatives [15–17]. In comparison 

with the well-known β-carbolines, an α-carboline (1-azacarbazole) skeleton is rarely present 

in alkaloids found in nature. Only a few isolated natural products contain a pyrido[2,3-

b]indole (α-carboline) core, for example, cryptotackieine [18], neocryptolepine [19], 

grossularine-1, grossularine-2 [20, 21] and mescengricin [22]. α-Carboline related 

derivatives have been synthesized and demonstrated to show biologically important 

anticancer activities [23–27].

In our previous research on YC-1 analogs, we identified certain 1,6,8,9-substituted α-

carboline derivatives as anticancer agents [12]. In addition, both 3,9-substituted carbazole 

derivatives [10] and 3,9-substituted β-carboline derivatives [11] displayed remarkable 

anticancer effects. Our results revealed that introducing appropriate substituents into 

position-3 and 9 of the two latter tricyclic core nuclei could enhance the antitumor activity. 

Accordingly, we proposed that a shift from 6-substitution to 3-substitution on the α-

carboline skeleton might produce better antitumor agents (Fig. 2). Consequently, we 

designed and synthesized a series of novel 3,9-substituted α-carboline derivatives (D) (Fig. 

2) and screened the new compounds for cytotoxic activity against five types of human 

cancer cell lines. The general structures of target compounds are depicted in Fig. 2. 

Additional biological studies were performed to analyse the cell cycle distribution and 

Lin et al. Page 2

Eur J Med Chem. Author manuscript; available in PMC 2017 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



apoptosis characteristics of the novel α-carboline derivatives. In this study, we also 

investigated the mechanism of apoptotic induction in COLO 205 cells by the promising 

compound 11.

2. Results and discussion

2.1. Chemistry

The synthetic route to the α-carboline scaffold is illustrated in Scheme 1. The initial 

synthesis of the 3-substituted α-carbolines proceeded through the acid-catalyzed 

decomposition of a 1-(2-pyridyl)benzotriazole and cyclization of the indole ring, a 

modification of the Graebe–Ullmann carbazole synthesis [28, 29]. The starting material 

1,2,3-benzotriazole (1) was reacted with methyl 6-chloronicotinate (2) to form methyl 6-

(1,2,3-benzotriazol-1-yl)nicotinate (3). Then, methyl α-carboline-3-carboxylate (4) was 

generated by a Graebe–Ullmann reaction via heating 3 in polyphosphoric acid. 

Subsequently, compound 4 was alkylated with various arylmethyl halides to obtain the 

corresponding methyl 3-carboxylate-9-substituted α-carboline derivatives (6–30). The esters 

in compounds 4 and 6–30 were also reduced with calcium borohydride to afford the 

corresponding carbinols (5 and 31–55). Finally, compounds 6, 10, and 11 were hydrolyzed 

with sodium hydroxide to obtain the corresponding carboxylic acid derivatives (56–58). All 

of the newly synthesized products were characterized by IR, 1H, and 13C-NMR, and mass 

spectroscopy.

2.2. Biological evaluation

All of the above synthesized α-carboline derivatives (4–58) were evaluated for cytotoxicity 

against the Detroit 551 (human normal skin fibroblast) and four cancer cell lines, including 

HL-60 (leukemia), Hep 3B (hepatoma), H460 (non-small-cell-lung carcinoma), and COLO 

205 (colorectal adenocarcinoma). The results are summarized in Table 1. The N-9 

nonsubstituted α-carbolines (4 and 5) exhibited almost no cytotoxicity. Moreover, 

compound 6 with a benzyl group added at the N-9 position was also inactive (IC50 > 50 

μM). To potentially increase potency of the α-carboline derivatives, we introduced various 

substituents on the N-9 benzyl ring attached to the α-carboline scaffold. Initially, we 

evaluated the effects of methoxy moieties. Compounds 7 and 8 bearing a 2- or 3-

methoxybenzyl moiety, respectively, demonstrated moderate antiproliferative effects (IC50 

4.0–43.1 μM), against some cancer cell lines, whereas compound 9 bearing a 4-

methoxybenzyl moiety was completely inactive (IC50 > 50 μM). Compounds 10 (3,5-

dimethoxybenzyl) and 11 (3,4,5-trimethoxybenzyl) exhibited significant activity against 

HL-60, COLO 205, Hep 3B, and H460 cancer cell lines (IC50 0.3–5.56 μM). Subsequently, 

we investigated the effects of halogen atoms on the N-9 benzyl ring. In contrast to 

compounds with methoxy groups, compounds with either chloro (12–18) or fluoro (19–25) 

substituents were mostly inactive against the tested cancer cell lines. Only a few compounds 

(13, 3-Cl, 7.1 μM; 15, 2,3-Cl, 4.1 μM; 18, 3,4-Cl, 8.2 μM) displayed some potency against 

the HL-60 cell line. In further modifications, the N-9 benzyl ring was replaced with hetero-

aromatic methyl groups (−CH2Ar), including 3,4-methylenedioxy benzyl (26), furan-2-yl 

methyl (27), furan-3-yl methyl (28), thiophen-2-yl methyl (29), and thiophen-3-yl methyl 
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(30). However, these hetero-aromatic methyl substitutions led to dramatically diminished 

antitumor activities (IC50 > 50 μM).

Interestingly, replacing the COOCH3 group (R3) of compounds 6–25 with a CH2OH group 

(31–50) led to enhanced inhibitory effects in some cases, particularly with the halogenated 

compounds (compare 12 vs. 37, 25 vs. 50). This finding suggested that the CH2OH group 

(R3) of α-carboline derivatives might play a pivotal role in the anti-proliferate activities 

against cancer cells. These results corresponded with those of previous structure-activity 

relationship (SAR) studies on furoindole derivatives [30], which revealed that a CH2OH 

substituent and N-benzyl group on the core skeleton played important roles in boosting the 

anticancer activity of YC-1 analogs. However, even with a CH2OH group on the 3-position, 

the N-9 hetero-aromatic α-carboline derivatives 51–55 remained inactive. In prior 

investigations on certain 3,9-substituted β-carboline derivatives, a free carboxylic acid group 

on the 3-position of the β-carboline core improved the antiproliferative activity [11]. 

However, replacing the COOCH3 group (R3) of compounds 6, 10, and 11 with a COOH 

group (56–58) did not have the same effect and considerably reduced the potency of 10 and 

11.

Among all of the new 3,9-substituted α-carboline derivatives, compound 11 [methyl-9-

(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate] demonstrated the greatest 

cytotoxicity with submicrolar IC50 values against HL-60 (0.3 μM), COLO 205 (0.49 μM), 

Hep3B (0.7 μM), and H460 (0.8 μM) cells. In addition, compound 11 showed low 

cytotoxicity toward the Detroit 551 cell line (IC50 > 50 μM). This result suggested that α-

carboline derivatives selectively suppressed tumor growth without causing toxicity to 

normal somatic cells.

In the present work, the above findings can be summarized into the following two SAR 

conclusions.

1. An N-9 methylaryl moiety (R9) is an essential functional group for maintaining the 

potency of α-carboline derivatives against cancer cells. Generally, regardless of the 

substituent (−COOCH3 or −CH2OH) on the 3-position of the α-carboline, methoxy 

substitutions on an N-9 benzyl ring led to greater potency than halogen 

substitutions (Cl or F). More specifically, based on the N-9 methylaryl moiety, the 

following rank order of in vitro anticancer potency was found: 3,4,5-

trimethoxybenzyl (11, 36) ≧ 3,5-dimethoxybenzyl (10, 35) > mono-methoxybenzyl 

(7–9, 32–34) ≧ halogen substituted benzyl (12–25, 37–50) ≧ benzyl (6, 31) ≧ 

hetero-aromatic methyl (26–30, 51–55).

2. With three different α-carboline R3 substitutions, the in vitro anticancer activities 

were ranked in the following order of decreasing activity: CH2OH (31–55) ≧ 

COOCH3 (6–30) > COOH (56–58).

2.3. Growth inhibitory activity of compound 11 against a panel of human cancer cell lines

To further survey the potential activity spectrum of 3,9-substituted α-carbolines, compound 

11 was sent to the National Cancer Institute for evaluation in the NCI-60 human cancer cell 

lines panel available through the Developmental Therapeutics Program. Data was obtained 
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for 56 human cancer cell lines (Table 2). Compound 11 displayed positive cytotoxic effects 

(negative value in the cell growth percent) toward 5 out of 56 cell lines. At a single high 

dose (10 μM), the colon carcinoma COLO 205 cell line was most sensitive (cell growth 

percentage = −52.54%) to the growth inhibitory effects of 11. This finding encouraged us to 

investigate the mechanism of action of 11 in COLO 205 cells.

2.4. Compound 11 inhibited cell-growth and produced morphological change and 
apoptosis in human colon carcinoma COLO 205 cells

Among all 55 new compounds, compound 11 (Fig. 3A) was the most potent compound 

against human colon carcinoma COLO 205 cells. As shown in Fig. 3B, exposure of COLO 

205 cells to various concentrations of 11 (0.1, 0.5, and 1.0 μM) for 48 h resulted in cell 

number decreases of COLO 205 cells relative to control in a dose-dependent manner. To 

confirm the effects of 11 on cell morphology, COLO 205 cells were stained with a 

fluorescent DNA-staining dye (Hoechst 33258). As shown in Fig. 3C, control cells exhibited 

uniformly dispersed chromatin (homogeneous blue fluorescence in the nuclei). After 

treatment with compound 11 at 0.5 μM for 12, 24, 36, and 48 h, the nuclei became 

fragmented and condensed, and cells showed the appearance of apoptotic bodies (arrows 

indicate apoptotic nuclei). These results indicated typical characteristics of apoptosis in the 

11-treated COLO 205 cells.

Annexin V/propidium iodide (PI) staining was also used to confirm the apoptotic 

characteristics produced by 11 in COLO 205 cells. As shown in Fig. 3D, cells incubated in 

the absence of 11 for 12, 24, 36, and 48 h were undamaged and were negative for both 

annexin V-FITC and PI staining (Q3). Upon treatment with 11 at 0.5 μM for 24 h to 48 h, 

the numbers of advanced apoptotic cells stained by positive annexin V-FITC and negative PI 

(Q4) significantly increased as the incubation time grew longer. The numbers of advanced 

apoptotic cells stained by positive annexin V-FITC and PI (Q2) also increased significantly 

with incubation time. These data demonstrate that compound 11 induced cell apoptosis in 

COLO 205 cells.

2.5. Compound 11 interfered with the cell-cycle distribution and changed expression of 
G2/M regulatory proteins in COLO 205 cells

Next, we investigated cell cycle arrest and apoptotic mechanisms caused by compound 11-

induced inhibition of COLO 205 cell growth. COLO 205 cells were treated with 0.5 μM of 

11 for 0, 12, 24, 36, and 48 h, followed by flow cytometry analysis to determine the cell 

cycle distribution of treated cells. As shown in Fig. 4A, compound 11 induced a time-

dependent accumulation of G2/M cells and apoptotic (sub-G1) cells.

Analysis of cell cycle-related protein expression elucidated the mechanisms by which 

compound 11 induced G2/M arrest. Cyclin B1 and CDK1 are markers for induction of 

mitotic arrest [30]. COLO 205 cells treated with 0.5 μM of 11 exhibited decreased cyclin B1 

and CDK1 protein levels (Fig. 4B).
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2.6. Compound 11 stimulated caspase-3, caspase-8, caspase-9 and PARP cleavage in 
COLO 205 cells

To confirm the possibility that 11-induced apoptosis is related to contributions from the 

intrinsic or extrinsic signal pathway, COLO 205 cells were treated with 0.5 μM of 11 for 0, 

12, 24, 36, and 48 h, and then the activities of caspase-3, caspase-8, caspase-9, and PARP 

were determined using a Western blot assay. PARP cleavage is an important apoptosis 

marker; caspase-3 cleaves PARP between Asp214 and Glyn215 to yield p85 and p25 

fragments [30]. As shown in Fig. 5, compound 11 induced significant caspase-3, caspase-8, 

caspase-9, and PARP cleavage.

2.6. Compound 11 induced mitochondria signaling pathways in COLO 205 cells

The mitochondria are key organelles in the control of apoptosis [27]. We investigated 

whether compound 11 was capable of inducing depolarization of the mitochondrial 

membrane potential (Δψm) using JC-1, a lipophilic fluorescent cation dye. When JC-1 

incorporates into the energized mitochondrial membrane, it spontaneously forms a complex, 

known as the JC-1 polymer, with intense red fluorescence, while monomeric JC-1 shows 

green fluorescence. COLO 205 cells were treated with 0.5 μM of 11 for 6, 12, 24, and 36 h, 

followed by staining with JC-1 to confirm apoptosis as the cause of decreased Δψm. As 

shown in Fig. 6A, in healthy cells with high mitochondrial Δψm, a significant percentage of 

red fluorescence (P2) was found relative to the green fluorescence (P3) of the uncomplexed 

monomeric dye (0 h). The percentage of red fluorescence decreased significantly over time 

(6–36 h), indicative of a change in Δψm occurring in the population in which apoptosis is 

induced. Moreover, it is well known that the dissipation of Δψm causes release of apoptosis-

inducing factor (AIF), Endo G, Apaf-1, and cytochrome c into the cytosol, with consequent 

activation of the execution phase of apoptosis. In this study, we also demonstrated that 

mitochondrial AIF, Endo G, Apaf-1, and cytochrome c were released into the cytosol during 

compound 11-induced apoptosis (Fig. 6B).

The Bcl-2 family proteins are key regulators of mitochondrial-related apoptotic pathways 

[27]. Some of these proteins (such as Bcl-xL and Bcl-2) are anti-apoptotic, whereas others 

(such as Bad, and Bax) are pro-apoptotic. The balance of pro- and anti-apoptotic Bcl-2 

proteins influences the sensitivity of cells to apoptotic stimuli [27]. Exposure of COLO 205 

cells to 0.5 μM of 11 for 6, 12, 24, 36, and 48 h verified the involvement of Bcl-2 protein 

activity in compound 11-induced apoptosis. As shown in Fig. 6C, results indicated that 

compound 11 reduced anti-apoptotic Bcl-2 and Bcl-xL levels, as well as increased pro-

apoptotic Bax levels and the release of Endo G, AIF, Apaf-1, cytochrome c, and procaspase 

9 from the mitochondria to the cytosol. Release of Apaf-1, and cytochrome c leads to the 

activation of caspase-9. Activated caspase-9, in turn, cleaves and activates caspase-3. These 

results suggest that the mitochondrial signaling pathways of COLO 205 cells mediate 

compound 11-induced apoptosis.
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2.7. Compound 11 induced the death receptor-dependent apoptotic signaling pathways in 
COLO 205 cells

On binding to their ligands, death receptors trigger apoptosis by stimulating the caspase-8 

mediated caspase cascade [27]. In this study, expression of several death receptors (Fas, 

DR4, and DR5) and their ligands (FasL and TRAIL) were detected in COLO 205 cells. 

COLO 205 cells were treated with 0.5 μM of 11 for 6, 12, 24, 36, and 48 h and the effects of 

compound 11 on death receptors and their ligands were investigated. As shown in Fig. 7A 

and B, compound 11 induced most increase in DR4 and TRAIL. These results suggest that 

DR4 up-regulation plays an important role in compound 11-mediated apoptosis in COLO 

205 cells.

2.8. Compound 11-induced apoptosis is mediated via JNK signaling pathway

Mitogen-activated protein kinases (MAPK) respond to extracellular stimuli and regulate 

cellular activitives, such as gene expression, mitosis, differentiation, and cell survival/

apoptosis [27]. COLO 205 cells were treated with 0.5 μM of 11 for 6, 12, 24, 36, and 48 h 

and the effects of compound 11 on extracellular signal-regulated kinases (ERK1/2), JNK 

and p38 signaling pathway were investigated. As shown in Fig. 8, compound 11 decreased 

phosphor-ERK1/2 and phospho-p38 expression. Compound 11 induced JNK 

phosphorylation after 12 h incubation at 0.5 μM. These observations suggest that JNK 

activation is involved in compound 11-induced apoptosis. It has been reported that JNK is 

activated by TRAIL in colon cancer cells [27]. In our study activated JNK might play a 

mediate role in TRAIL-induced COLO 205 cells apoptosis.

3. Conclusion

In this study, we continued our investigation on YC-1 analogs by synthesizing a new series 

of 3,9-substituted α-carboline derivatives designed as potential anticancer agents. All the 

products 4–58 were screened for cytotoxic activity against five human cancer cell lines, and 

some of them showed promising activity at micromolar concentration. Particularly, 

compound 11 displayed promising anticancer effects on COLO 205 cells by inducing cell 

apoptosis. Our studies have clearly identified that the death receptor protein DR4 and the 

mitochondrial environment are the targets of compound 11. The apoptotic effects of 

compound 11 on COLO 205 cells occur through both intrinsic and extrinsic signaling 

pathways. Therefore, novel 3,9-substituted α-carbolines were identified as apoptosis 

inducers, and compound 11 could be considered as a lead compound for development of 

clinical trial candidates for cancer chemotherapy.

4. Experimental section

4.1. Materials and physical measurements

All of the solvents and reagents were obtained commercially and used without further 

purification. The progress of all reactions was monitored by TLC (thin layer 

chromatography) on 2 × 6 cm pre-coated silica gel 60 F254 plates of thickness 0.25 mm 

(Merck). The chromatograms were visualized under UV 254–366 nm. The column 

chromatography was performed using silica gel 60 (Merck, particle size 0.063–0.200 mm). 
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Melting points (mp) were determined with a Yanaco MP-500D melting point apparatus and 

are uncorrected. IR spectra were recorded on Shimadzu IR-Prestige-21 spectrophotometers 

as KBr pellets. The 1D nuclear magnetic resonance (NMR, 1H and 13C) spectra were 

obtained on a Bruker Avance DPX-200 or DPX-400 FT-NMR spectrometer at room 

temperature. The 2D NMR spectra were obtained on a Bruker Avance DPX-400 FT-NMR 

spectrometer, and chemical shifts were expressed in parts per million (ppm, δ). The 

following abbreviations are used: s, singlet; d, doublet; t, triplet; dd, double doublet; and m, 

multiplet. Mass spectra were performed in the Instrument Center of National Science 

Council at National Chung Hsing University, (Taichung City, Taiwan R.O.C.), using 

Finnigan ThermoQuest MAT 95 XL (EI-MS).

4.2. Chemistry

4.2.1. Preparation of methyl α-carboline-3-carboxylate (4)—The α-carboline 

derivatives were prepared according to published methods [12]. A mixture of 1H-1,2,3,-

benzotriazole (1) (5 g, 0.04 mol) and methyl 6-chloronicotinate (2) (8.64 g, 0.05 mol) was 

heated at 150–160 °C for 1.5 h. The reaction mixture was cooled and quenched with 10% 

Na2CO3 solution. The crude product was extracted with CH2Cl2 and washed with saturated 

Na2CO3, dried over MgSO4, and evaporated. The residue was purified by silica gel column 

chromatography (n-hexane: EtOAc = 4:1) and recrystallized from MeOH to yield methyl 6-

(1,2,3-benzotriazol-1-yl)nicotinate (3) as a white solid. Yield: 65%; mp: 121–122 °C; IR 

(KBr) ν (cm−1): 1716 (C=O); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 3.89 (s, 3H, 

−COOCH3), 7.51 (t, J = 8.0 Hz, 1H, ArH), 7.68 (t, J = 8.0 Hz, 1H, ArH), 8.15 (d, J = 8.0 

Hz, 1H, ArH), 8.27 (d, J = 8.0 Hz, 1H, ArH), 8.44–8.51 (m, 2H, ArH), 9.02 (d, J = 1.9 Hz, 

1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 52.92, 114.05, 115.05, 120.14, 124.54, 

126.01, 130.03, 131.12, 140.67, 146.51, 150.11, 153.60, 164.73; MS (EI, 70 eV) m/z: 254.1 

[M]+; HRMS (EI) m/z: calculated for C13H10N4O2: 254.0804; found: 254.0808. Then, 

compound 3 (5 g, 0.02 mole) and polyphosphoric acid (15.42 g) were heated at 150–160°C 

until N2 gas evolution ceased, and then heated to 180°C for 30 min. After cooling, 10% 

NaOH solution was poured into the reaction mixture to adjust the pH to 7–8. The resulting 

precipitate was collected and washed with water. The crude product was isolated and 

purified by silica gel column chromatography (n-hexane: EtOAc = 1:1) and recrystallized 

from MeOH to give methyl α-carboline-3-carboxylate (4) as white needles. Yield: 11%; mp: 

202–204 °C; IR (KBr) ν (cm−1): 1712 (C=O); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

3.89 (s, 3H, −COOCH3), 7.28 (t, J = 8.0 Hz, 1H, ArH), 7.48–7.56 (m, 2H, ArH), 8.29 (d, J = 

8.0 Hz, 1H, ArH), 8.98 (s, 1H, ArH), 9.02 (s, 1H, ArH), 12.25 (s, 1H, NH); 13C NMR (100 

MHz, DMSO-d6) δ (ppm): 52.37, 112.10, 115.30, 117.35, 120.80, 120.87, 122.22, 127.88, 

129.97, 139.91, 148.21, 154.21, 166.59; MS (EI, 70 eV) m/z: 226.1 [M]+; HRMS (EI) m/z: 

calculated for C13H10N2O2: 226.0742; found: 226.0745.

4.2.2. Preparation of methyl 9-substituted-9H-pyrido[2,3-b]indole-3-
carboxylate (6–30)—A mixture of methyl α-carboline-3-carboxylate (4) (1 equiv) and 

KOH (4 equiv) in dry THF (50 mL) was heated at 50 °C for 10 min. The appropriate aryl 

halide (1 – 1.4 equiv) was added, and the mixture was stirred refluxing for 4 h. Reaction 

completion was confirmed by TLC monitoring. The mixture was poured into ice water (200 

mL) and extracted with CH2Cl2, dried over MgSO4 and evaporated. The residue was 
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isolated by column chromatography (silica gel, n-hexane: EtOAc = 1:1), and then 

recrystallized to give the corresponding pure products (6–30).

4.2.2.1. Methyl-9-benzyl-9H-pyrido[2,3-b]indole-3-carboxylate (6): Yield: 17%; mp: 

142–143 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

3.92 (s, 3H, −COOCH3), 5.57 (s, 2H, N-CH2), 7.23–7.37 (m, 6H, ArH), 7.54 (t, J = 8.0 Hz, 

1H, ArH), 7.68 (d, J = 8.0 Hz, 1H, ArH), 8.40 (d, J = 8.0 Hz, 1H, ArH), 9.08 (d, J = 2.0 Hz, 

1H, ArH), 9.15 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 44.45, 

52.12, 110.72, 114.92, 117.64, 120.01, 121.13, 122.14, 127.12 (2C), 127.48, 127.75, 128.66 

(2C), 130.01, 137.16, 139.77, 147.90, 152.84, 166.10; MS (EI, 70 eV) m/z: 316.3 [M]+; 

HRMS (EI) m/z: calculated for C20H16N2O2: 316.1212; found: 316.1215.

4.2.2.2. Methyl 9-(2-methoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (7): Yield: 

13%; mp: 126–127 °C; IR (KBr) ν (cm−1): 1712 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.86 (s, 3H, −OCH3), 3.90 (s, 3H, −COOCH3), 5.64 (s, 2H, N-CH2), 6.55 (d, J = 8.0 

Hz, 1H, ArH), 6.66 (d, J = 8.0 Hz, 1H, ArH), 7.02 (d, J = 8.2 Hz, 1H, ArH), 7.19 (t, J = 7.0 

Hz, 1H, ArH), 7.28–7.36 (m, 1H, ArH), 7.50–7.52 (m, 2H, ArH), 8.35 (d, J = 7.6 Hz, 1H, 

ArH), 8.99 (d, J = 2.0 Hz, 1H, ArH), 9.08 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, 

DMSO-d6) δ (ppm): 52.06, 54.97, 55.47, 110.53, 110.93, 114.91, 117.52, 119.94, 120.34, 

121.04, 122.03, 124.46, 126.89, 127.73, 128.69, 129.80, 140.02, 147.75, 152.95, 156.60, 

166.10; MS (EI, 70 eV) m/z: 346.1 [M]+; HRMS (EI) m/z: calculated for C21H18N2O3: 

346.1317; found: 346.1310.

4.2.2.3. Methyl 9-(3-methoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (8): Yield: 

37%; mp: 131–132 °C; IR (KBr) ν (cm−1): 1707 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.64 (s, 3H, −OCH3), 3.91 (s, 3H, −COOCH3), 5.69 (s, 2H, N-CH2), 6.73–6.86 (m, 

3H, ArH), 7.15 (t, J = 7.8 Hz, 1H, ArH), 7.34 (t, J = 7.0 Hz, 1H, ArH), 7.53 (t, J = 7.0 Hz, 

1H, ArH), 7.66 (d, J = 8.0 Hz, 1H, ArH), 8.36 (d, J = 7.8 Hz, 1H, ArH), 9.05 (d, J = 2.0 Hz, 

1H, ArH), 9.10 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 44.39, 

52.14, 55.01, 110.74, 112.51, 113.26, 114.92, 117.67, 119.15, 120.00, 121.16, 122.12, 

127.78, 129.84, 129.99, 138.74, 139.80, 147.89, 152.84, 159.42, 166.12; MS (EI, 70 eV) 

m/z: 346.1 [M]+; HRMS (EI) m/z: calculated for C21H18N2O3: 346.1317; found: 346.1317.

4.2.2.4. Methyl 9-(4-methoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (9): Yield: 

17%; mp: 143–144 °C; IR (KBr) ν (cm−1): 1720 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.64 (s, 3H, −OCH3), 3.90 (s, 3H, −COOCH3), 5.64 (s, 2H, N-CH2), 6.82 (dd, J = 

2.6, 8.0 Hz, 2H, ArH), 7.20–7.27 (m, 2H, ArH), 7.31 (t, J = 8.0 Hz, 1H, ArH), 7.52 (t, J = 

8.0 Hz, 1H, ArH), 7.66 (d, J = 8.0 Hz, 1H, ArH), 8.33 (d, J = 8.0 Hz, 1H, ArH), 9.05 (d, J = 

2.0 Hz, 1H, ArH), 9.07 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

43.97, 52.15, 55.09, 110.78, 114.07 (2C), 114.92, 117.57, 120.04, 121.11, 122.09, 127.74, 

128.71 (2C), 129.13, 129.92, 139.71, 147.90, 152.80, 158.69, 166.18; MS (EI, 70 eV) m/z: 

346.1 [M]+; HRMS (EI) m/z: calculated for C21H18N2O3: 346.1317; found: 346.1323.

4.2.2.5. Methyl-9-(3,5-dimethoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (10): 
Yield: 49%; mp: 134–136 °C; IR (KBr) ν (cm−1): 1720 (C=O); 1H NMR (200 MHz, 
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DMSO-d6) δ (ppm): 3.59 (s, 6H, 2 × −OCH3), 3.86 (s, 3H, −COOCH3), 5.61 (s, 2H, N-

CH2), 6.33 (s, 3H, ArH), 7.34 (t, J = 8.0 Hz, 1H, ArH), 7.52 (t, J = 8.0 Hz, 1H, ArH), 7.62 

(d, J = 8.0 Hz, 1H, ArH), 8.30 (d, J = 8.0 Hz, 1H, ArH), 9.01 (d, J = 2.0 Hz, 1H, ArH), 9.04 

(d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 44.66, 52.41, 55.35 

(2C), 98.72, 105.57 (2C), 110.93, 115.14, 117.90, 120.16, 121.49, 122.26, 128.09, 130.16, 

139.70, 140.02, 148.08, 153.02, 160.91 (2C), 166.42; MS (EI, 70 eV) m/z: 376.1 [M]+; 

HRMS (EI) m/z: calculated for C22H20N2O4: 376.1423; found: 376.1428.

4.2.2.6. Methyl-9-(3,4,5-trimethoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (11): 
Yield: 13%; mp: 168–169 °C; IR (KBr) ν (cm−1): 1712 (C=O); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.56 (s, 3H, −COOCH3), 3.61 (s, 6H, 2 × −OCH3), 3.92 (s, 3H, 

−OCH3), 5.65 (s, 2H, N-CH2), 6.69 (s, 2H, ArH), 7.33 (t, J = 7.6 Hz, 1H, ArH), 7.55 (t, J = 

7.6 Hz, 1H, ArH), 7.76 (d, J = 8.0 Hz, 1H, ArH), 8.36 (d, J = 7.6 Hz, 1H, ArH), 9.13 (s, 2H, 

ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 45.13, 52.46, 56.22 (2C), 60.33, 105.38 

(2C), 111.18, 115.30, 117.99, 120.37, 121.48, 122.45, 128.11, 130.34, 133.21, 137.32, 

140.19, 148.21, 153.21, 153.35 (2C), 166.48; MS (EI, 70 eV) m/z: 406.1 [M]+; HRMS (EI) 

m/z: calculated for C23H22N2O5: 406.1529; found: 406.1537.

4.2.2.7. Methyl 9-(2-chlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (12): Yield: 

62%; mp: 171–172 °C; IR (KBr) ν (cm−1): 1703 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.89 (s, 3H, −COOCH3), 5.73 (s, 2H, N-CH2), 6.48 (d, J = 7.6 Hz, 1H, ArH), 7.07 (t, 

J = 8.0 Hz, 1H, ArH), 7.21–7.37 (m, 2H, ArH), 7.46–7.52 (m, 3H, ArH), 8.35 (d, J = 8.0 Hz, 

1H, ArH), 8.96 (d, J = 1.8 Hz, 1H, ArH), 9.08 (d, J = 1.8 Hz, 1H, ArH); 13C NMR (50 MHz, 

DMSO-d6) δ (ppm): 42.55, 52.24, 110.48, 115.12, 117.98, 120.15, 121.45, 122.31, 127.37, 

127.63, 128.04, 129.27, 129.74, 130.09, 131.81, 134.15, 139.90, 147.94, 152.89, 166.14; 

MS (EI, 70 eV) m/z: 350.1 [M]+; HRMS (EI) m/z: calculated for C20H15ClN2O2: 350.0822; 

found: 350.0821.

4.2.2.8. Methyl 9-(3-chlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (13): Yield: 

67%; mp: 162–163 °C; IR (KBr) ν (cm−1): 1726 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.90 (s, 3H, −COOCH3), 5.73 (s, 2H, N-CH2), 7.12–7.19 (m, 1H, ArH), 7.26–7.36 

(m, 4H, ArH), 7.55 (t, J = 8.0 Hz, 1H, ArH), 7.67 (d, J = 8.2 Hz, 1H, ArH), 8.35 (d, J = 7.8 

Hz, 1H, ArH), 9.03 (d, J = 2.0 Hz, 1H, ArH), 9.09 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 43.92, 52.18, 110.61, 115.01, 117.86, 120.07, 121.33, 122.22, 

125.80, 127.01, 127.58, 127.92, 130.08, 130.68, 133.31, 139.69, 139.74, 147.95, 152.77, 

166.11; MS (EI, 70 eV) m/z: 350.1 [M]+; HRMS (EI) m/z: calculated for C20H15ClN2O2: 

350.0822; found: 350.0826.

4.2.2.9. Methyl 9-(4-chlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (14): Yield: 

67%; mp: 178–179 °C; IR (KBr) ν (cm−1): 1714 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.90 (s, 3H, −COOCH3), 5.70 (s, 2H, N-CH2), 7.22–7.35 (m, 5H, ArH), 7.52 (t, J = 

8.0 Hz, 1H, ArH), 7.63 (d, J = 8.2 Hz, 1H, ArH), 8.34 (d, J = 7.8 Hz, 1H, ArH), 9.02 (d, J = 

2.0 Hz, 1H, ArH), 9.07 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

43.84, 52.18, 110.62, 114.99, 117.77, 120.07, 121.28, 122.18, 127.86, 128.69 (2C), 129.07 
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(2C), 130.01, 132.18, 136.21, 139.66, 147.92, 152.76, 166.12; MS (EI, 70 eV) m/z: 350.1 

[M]+; HRMS (EI) m/z: calculated for C20H15ClN2O2: 350.0822; found: 350.0819.

4.2.2.10. Methyl 9-(2,3-dichlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (15): 
Yield: 70%; mp: 198–199 °C; IR (KBr) ν (cm−1): 1707 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.87 (s, 2H, N-CH2), 6.38 (d, J = 7.6 Hz, 1H, 

ArH), 7.10 (d, J = 7.9 Hz, 1H, ArH), 7.32–7.40 (m, 1H, ArH), 7.50–7.55 (m, 3H, ArH), 8.40 

(d, J = 8.0 Hz, 1H, ArH), 8.96 (d, J = 2.0 Hz, 1H, ArH), 9.12 (d, J = 2.0 Hz, 1H, ArH); 13C 

NMR (50 MHz, DMSO-d6) δ (ppm): 43.16, 52.17, 110.47, 115.13, 118.05, 120.11, 121.46, 

122.29, 125.62, 128.02, 128.46, 129.48, 129.65, 130.10, 132.25, 136.87, 139.80, 147.88, 

152.56, 166.02; MS (EI, 70 eV) m/z: 384.1 [M]+; HRMS (EI) m/z: calculated for 

C20H14Cl2N2O2: 384.0432; found: 384.0428.

4.2.2.11. Methyl 9-(2,4-dichlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (16): 
Yield: 67%; mp: 168–169 °C; IR (KBr) ν (cm−1): 1720 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.70 (s, 2H, N-CH2), 6.51 (d, J = 8.4 Hz, 1H, 

ArH), 7.17 (dd, J = 2.1, 8.4 Hz, 1H, ArH), 7.31–7.39 (m, 1H, ArH), 7.51–7.53 (m, 2H, 

ArH), 7.67 (d, J = 2.1 Hz, 1H, ArH), 8.38 (d, J = 7.7 Hz, 1H, ArH), 8.96 (d, J = 2.0 Hz, 1H, 

ArH), 9.09 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 42.19, 52.18, 

110.43, 115.13, 118.03, 120.13, 121.45, 122.31, 127.74, 128.01, 128.77, 129.14, 130.12, 

132.72, 132.81, 133.39, 139.76, 147.89, 152.78, 166.03; MS (EI, 70 eV) m/z: 384.1 [M]+; 

HRMS (EI) m/z: calculated for C20H14Cl2N2O2: 384.0432; found: 384.0434.

4.2.2.12. Methyl 9-(2,6-dichlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (17): 
Yield: 25%; mp: 225–226 °C; IR (KBr) ν (cm−1): 1714 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.96 (s, 2H, N-CH2), 7.23–7.34 (m, 2H, ArH), 

7.37–7.53 (m, 4H, ArH), 8.36 (d, J = 7.7 Hz, 1H, ArH), 9.03 (d, J = 2.0 Hz, 1H, ArH), 9.09 

(d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 41.71, 52.15, 110.24, 

114.80, 117.66, 120.31, 121.04, 122.22, 127.72, 129.23 (2C), 129.81, 130.80, 131.08, 

135.68 (2C), 139.61, 147.54, 153.14, 166.11; MS (EI, 70 eV) m/z: 384.1 [M]+; HRMS (EI) 

m/z: calculated for C20H14Cl2N2O2: 384.0432; found: 384.0441.

4.2.2.13. Methyl 9-(3,4-dichlorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (18): 
Yield: 62%; mp: 170–171 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.72 (s, 2H, N-CH2), 7.16 (d, J = 8.0 Hz, 1H, 

ArH), 7.32 (t, J = 8.0 Hz, 1H, ArH), 7.46–7.58 (m, 3H, ArH), 7.68 (d, J = 8.0 Hz, 1H, ArH), 

8.35 (d, J = 7.6 Hz, 1H, ArH), 9.02 (d, J = 2.0 Hz, 1H, ArH), 9.09 (d, J = 2.0 Hz, 1H, 

ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 43.37, 52.15, 110.54, 115.03, 117.90, 

120.07, 121.34, 122.22, 127.40, 127.91, 129.27, 130.09, 130.20, 130.93, 131.23, 138.36, 

139.56, 147.91, 152.69, 166.03; MS (EI, 70 eV) m/z: 384.1 [M]+; HRMS (EI) m/z: 

calculated for C20H14Cl2N2O2: 384.0432; found: 384.0439.

4.2.2.14. Methyl 9-(2-fluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (19): Yield: 

24%; mp: 154–155 °C; IR (KBr) ν (cm−1): 1701 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.90 (s, 3H, −COOCH3), 5.76 (s, 2H, N-CH2), 6.88–7.05 (m, 2H, ArH), 7.15–7.37 
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(m, 3H, ArH), 7.49–7.62 (m, 2H, ArH), 8.36 (d, J = 7.8 Hz, 1H, ArH), 9.02 (d, J = 2.0 Hz, 

1H, ArH), 9.09 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 41.17, 

52.53, 110.78, 115.39, 115.97 (d, 2JCF = 20.5 Hz), 118.18, 120.45, 121.63, 122.57, 124.20 

(d, 2JCF = 14.5 Hz), 125.09 (d, 4JCF = 2.5 Hz), 128.24, 129.34 (d, 3JCF = 3.5 Hz), 130.08 

(d, 3JCF = 8.5 Hz), 130.36, 140.15, 148.24, 153.19, 160.39 (d, 1JCF = 243.5 Hz), 166.46; MS 

(EI, 70 eV) m/z: 334.1 [M]+; HRMS (EI) m/z: calculated for C20H15FN2O2: 334.1118; 

found: 334.1110.

4.2.2.15. Methyl 9-(4-fluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (20): Yield: 

39%; mp: 139–140 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.90 (s, 3H, −COOCH3), 5.71 (s, 2H, N-CH2), 7.03–7.13 (m, 2H, ArH), 7.28–7.36 

(m, 3H, ArH), 7.53 (t, J = 8.0 Hz, 1H, ArH), 7.68 (d, J = 8.0 Hz, 1H, ArH), 8.36 (d, J = 7.6 

Hz, 1H, ArH), 9.05 (d, J = 2.0 Hz, 1H, ArH), 9.10 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 43.73, 52.10, 110.63, 114.93, 115.44 (d, 2JCF = 21.5 Hz, 2C), 

117.69, 120.02, 121.16, 122.13, 127.77, 129.27 (d, 3JCF = 8.0 Hz, 2C), 129.97, 133.39, 

139.62, 147.89, 152.73, 161.48 (d, 1JCF = 241.5 Hz), 166.07; MS (EI, 70 eV) m/z: 334.1 

[M]+; HRMS (EI) m/z: calculated for C20H15FN2O2: 334.1118; found: 334.1112.

4.2.2.16. Methyl 9-(2,4-difluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (21): 
Yield: 39%; mp: 134–135 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.73 (s, 2H, N-CH2), 6.87–7.12 (m, 2H, ArH), 

7.19–7.37 (m, 2H, ArH), 7.50–7.63 (m, 2H, ArH), 8.37 (d, J = 7.7 Hz, 1H, ArH), 9.02 (d, J 

= 2.0 Hz, 1H, ArH), 9.09 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

39.91, 52.14, 104.18 (dd, 2JCF = 26.0, 25.8 Hz), 110.36, 111.76 (dd, 2JCF = 21.0 Hz, 4JCF = 

3.5 Hz), 115.02, 117.82, 120.06, 120.38 (d, 4JCF = 3.0 Hz), 121.27, 122.19, 127.87, 129.99, 

130.41 (dd, 3JCF = 6.0, 9.5 Hz), 139.64, 147.83, 152.73, 159.93 (d, 1JCF = 246.5 Hz), 161.73 

(d, 1JCF = 231.5 Hz), 166.05; MS (EI, 70 eV) m/z: 352.1 [M]+; HRMS (EI) m/z: calculated 

for C20H14F2N2O2: 352.1023; found: 352.1032.

4.2.2.17. Methyl 9-(2,5-difluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (22): 
Yield: 36%; mp: 148–149 °C; IR (KBr) ν (cm−1): 1701 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.75 (s, 2H, N-CH2), 6.73–6.82 (m, 1H, ArH), 

7.07–7.38 (m, 3H, ArH), 7.51–7.64 (m, 2H, ArH), 8.36 (d, J = 7.6 Hz, 1H, ArH), 9.01 (d, J 

= 2.0 Hz, 1H, ArH), 9.08 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

39.92, 52.13, 110.33, 115.07, 115.39 (dd, 2JCF = 21.5 Hz, 3JCF = 4.0 Hz), 116.09 (dd, 2JCF 

= 24.5 Hz, 3JCF = 8.5 Hz), 117.29 (dd, 2JCF = 24.0 Hz, 3JCF = 9.0 Hz), 117.90, 120.10, 

121.32, 122.21, 125.90 (dd, 2JCF = 17.5 Hz, 3JCF = 8.0 Hz), 127.89, 130.02, 139.61, 147.83, 

152.70, 156.17 (d, 1JCF = 239.5 Hz), 158.08 (d, 1JCF = 239.5 Hz), 166.03; MS (EI, 70 eV) 

m/z: 352.1 [M]+; HRMS (EI) m/z: calculated for C20H14F2N2O2: 352.1023; found: 

352.1021.

4.2.2.18. Methyl 9-(2,6-difluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (23): 
Yield: 55%; mp: 192–193 °C; IR (KBr) ν (cm−1): 1707 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.90 (s, 3H, −COOCH3), 5.79 (s, 2H, N-CH2), 7.02–7.09 (m, 2H, ArH), 

7.27–7.42 (m, 2H, ArH), 7.53–7.55 (m, 2H, ArH), 8.34 (d, J = 7.7 Hz, 1H, ArH), 9.02 (d, J 
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= 2.0 Hz, 1H, ArH), 9.07 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

33.77, 52.16, 109.99, 111.91 (d, 2JCF = 24.0 Hz, 2C), 112.16, 114.89, 117.69, 120.10, 

121.14, 122.17, 127.78, 129.83, 130.67, 139.59, 147.69, 152.73, 161.06 (dd, 1JCF = 248.0 

Hz, 3JCF = 8.0 Hz, 2C), 166.11; MS (EI, 70 eV) m/z: 352.1 [M]+; HRMS (EI) m/z: 

calculated for C20H14F2N2O2: 352.1023; found: 352.1029.

4.2.2.19. Methyl 9-(3,4-difluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (24): 
Yield: 52%; mp: 119–120 °C; IR (KBr) ν (cm−1): 1724 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.72 (s, 2H, N-CH2), 7.02–7.09 (m, 1H, ArH), 

7.24–7.45 (m, 3H, ArH), 7.55 (t, J = 7.2 Hz, 1H, ArH), 7.71 (d, J = 8.2 Hz, 1H, ArH), 8.37 

(d, J = 7.6 Hz, 1H, ArH), 9.05 (d, J = 2.0 Hz, 1H, ArH), 9.11 (d, J = 2.0 Hz, 1H, ArH); 13C 

NMR (50 MHz, DMSO-d6) δ (ppm): 43.45, 52.13, 110.58, 115.01, 116.49 (d, 2JCF = 17.5 

Hz), 117.80 (d, 2JCF = 17.5 Hz), 117.82, 120.07, 121.27, 122.21, 123.97 (dd, 3JCF = 6.0 

Hz, 4JCF = 3.5 Hz), 127.85, 130.09, 134.93 (dd, 3JCF = 4.0 Hz, 4JCF = 3.5 Hz), 139.56, 

147.90, 148.77 (d, 1JCF = 256.0 Hz), 149.32 (d, 1JCF = 256.5 Hz), 152.69, 166.04; MS (EI, 

70 eV) m/z: 352.1 [M]+; HRMS (EI) m/z: C20H14F2N2O2: 352.1023; found: 352.1021.

4.2.2.20. Methyl 9-(3,5-difluorobenzyl)-9H-pyrido[2,3-b]indole-3-carboxylate (25): 
Yield: 67%; mp: 175–176 °C; IR (KBr) ν (cm−1): 1720 (C=O); 1H NMR (200 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.75 (s, 2H, N-CH2), 6.90–6.99 (m, 1H, ArH), 

7.03–7.15 (m, 1H, ArH), 7.34 (t, J = 8.0 Hz, 1H, ArH), 7.55 (t, J = 8.0 Hz, 1H, ArH), 7.69 

(d, J = 8.2 Hz, 1H, ArH), 8.38 (d, J = 7.6 Hz, 1H, ArH), 9.04 (d, J = 2.0 Hz, 1H, ArH), 9.11 

(d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 43.72, 52.11, 103.08 

(dd, 2JCF = 26.0, 25.5 Hz), 110.28 (d, 2JCF = 23.5 Hz, 2C), 110.51, 115.03, 117.92, 120.07, 

121.34, 122.21, 127.89, 130.10, 139.57, 141.79 (dd, 3JCF = 8.5, 9.5 Hz), 147.90, 152.70, 

162.46 (dd, 1JCF = 245.0 Hz, 3JCF = 13.0 Hz, 2C), 166.01; MS (EI, 70 eV) m/z: 352.1 [M]+; 

HRMS (EI) m/z: calculated for C20H14F2N2O2: 352.1023; found: 352.1021.

4.2.2.21. Methyl 9-((benzo[d][1,3]dioxol-5-yl)methyl)-9H-pyrido[2,3-b] indole-3-
carboxylate (26): Yield: 13%; mp: 129–130 °C; IR (KBr) ν (cm−1): 1708 (C=O); 1H NMR 

(40 MHz, DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.63 (s, 2H, N-CH2), 5.91 (s, 2H, 

−OCH2O–), 6.78 (s, 2H, ArH), 6.88 (s, 1H, ArH), 7.32 (t, J = 7.2 Hz, 1H, ArH), 7.54 (t, J = 

7.6 Hz, 1H, ArH), 7.70 (d, J = 8.0 Hz, 1H, ArH), 8.35 (d, J = 7.6 Hz, 1H, ArH), 9.06 (s, 1H, 

ArH), 9.08 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 44.59, 52.46, 101.39, 

108.22, 108.68, 111.13, 115.27, 117.97, 120.38, 121.07, 121.46, 122.44, 128.08, 130.30, 

131.29, 140.01, 147.01, 147.80, 148.24, 153.11, 166.45; MS (EI, 70 eV) m/z: 360.1 [M]+; 

HRMS (EI) m/z: calculated for C21H16N2O4: 360.1110; found: 360.1117.

4.2.2.22. Methyl 9-((furan-2-yl)methyl)-9H-pyrido[2,3-b]indole-3-carboxylate (27): 
Yield: 28%; mp: 154–155 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.72 (s, 2H, N-CH2), 6.35 (d, J = 4.1 Hz, 1H, 

ArH), 6.48 (d, J = 3.1 Hz, 1H, ArH), 7.33 (t, J = 7.5 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.56 

(t, J = 7.6 Hz, 1H, ArH), 7.77 (d, J = 8.2 Hz, 1H, ArH), 8.33 (d, J = 7.7 Hz, 1H, ArH), 9.05 

(s, 1H, ArH), 9.06 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 38.19, 52.47, 

109.09, 110.95, 111.11, 115.28, 118.06, 120.33, 121.54, 122.36, 128.05, 130.23, 139.98, 
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143.26, 148.12, 150.24, 152.87, 166.44; MS (EI, 70 eV) m/z: 306.2 [M]+; HRMS (EI) m/z: 

calculated for C18H14N2O3: 306.1004; found: 306.1008.

4.2.2.23. Methyl 9-((furan-3-yl)methyl)-9H-pyrido[2,3-b]indole-3-carboxylate (28): 
Yield: 20%; mp: 125–126 °C; IR (KBr) ν (cm−1): 1716 (C=O); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.55 (s, 2H, N-CH2), 6.32 (s, 1H, ArH), 7.32 

(t, J = 7.5 Hz, 1H, ArH), 7.50 (d, J = 0.9 Hz, 1H, ArH), 7.55 (t, J = 7.9 Hz, 1H, ArH), 7.73 

(s, 1H, ArH), 7.77 (d, J = 8.2 Hz, 1H, ArH), 8.33 (d, J = 7.8 Hz, 1H, H-5), 9.06 (s, 2H, 

ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 35.84, 52.08, 110.34, 110.57, 114.91, 

117.48, 119.98, 121.04 (2C), 122.02, 127.64, 129.82, 139.54, 140.88, 143.77, 147.77, 

152.53, 166.11; MS (EI, 70 eV) m/z: 306.2 [M]+; HRMS (EI) m/z: calculated for 

C18H14N2O3: 306.1004; found: 306.0999.

4.2.2.24. Methyl 9-((thiophen-2-yl)methyl)-9H-pyrido[2,3-b]indole-3-carboxylate (29): 
Yield: 23%; mp: 145–146 °C; IR (KBr) ν (cm−1): 1718 (C=O); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.89 (s, 2H, N-CH2), 6.91 (t, J = 4.0 Hz, 1H, 

ArH), 7.21 (d, J = 2.8 Hz, 1H, ArH), 7.31–7.34 (m, 2H, ArH), 7.56 (t, J = 7.6 Hz, 1H, ArH), 

7.80 (d, J = 8.4 Hz, 1H, ArH), 8.33 (d, J = 7.6 Hz, 1H, ArH), 9.06 (s, 2H, ArH); 13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 39.49, 52.10, 110.66, 115.01, 117.74, 120.04, 121.19, 

122.09, 125.94, 126.82, 127.03, 127.70, 129.91, 139.17, 139.33, 147.74, 152.30, 166.05; 

MS (EI, 70 eV) m/z: 322.1 [M]+; HRMS (EI) m/z: calculated for C18H14N2O2S: 322.0776; 

found: 322.0782.

4.2.2.25. Methyl 9-((thiophen-3-yl)methyl)-9H-pyrido[2,3-b]indole-3-carboxylate (30): 
Yield: 41%; mp: 140–141 °C; IR (KBr) ν (cm−1): 1716 (C=O); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 3.91 (s, 3H, −COOCH3), 5.69 (s, 2H, N-CH2), 6.98–7.00 (m, 1H, ArH), 

7.32 (t, J = 7.5 Hz, 1H, ArH), 7.39–7.41 (m, 2H, ArH), 7.54 (t, J = 7.9 Hz, 1H, ArH), 7.75 

(d, J = 8.2 Hz, 1H, ArH), 8.34 (d, J = 7.8 Hz, 1H, ArH), 9.06 (d, J = 2.0 Hz, 1H, ArH), 9.08 

(d, J = 2.0 Hz, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 39.73, 52.11, 110.65, 

114.93, 117.55, 119.99, 121.08, 122.06, 123.16, 126.96, 127.22, 127.71, 129.89, 137.70, 

139.63, 147.83, 152.54, 166.12; MS (EI, 70 eV) m/z: 322.1 [M]+; HRMS (EI) m/z: 

calculated for C18H14N2O2S: 322.0776; found: 322.0778.

4.2.3. Preparation of 3-hydroxymethyl-9-substituted-9H-pyrido[2,3-b]indoles (5 
and 31–55)—Compound 4 or 6–30 (1 equiv) was dissolved in a homogenous solution of 

Ca(BH4)2 (10 equiv) in dry THF (20 mL). The mixture was stirred at room temperature for 

30 min. The mixture was poured into ice water (200 mL) and extracted with EtOAc, dried 

over MgSO4 and evaporated. The residue was isolated by column chromatography (silica 

gel, n-hexane: EtOAc = 1:1) to give the corresponding pure products (5 and 31–55).

4.2.3.1. Methyl 9H-pyrido[2,3-b]indole-3-carboxylate (5): Yield: 15%; mp: 199–200 °C; 

IR (KBr) ν (cm−1): 3128 (NH); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 2.43 (s, 2H, 

−CH2OH), 2.58 (s, 1H, −CH2OH), 7.17 (t, 1H, J = 7.2 Hz, ArH), 7.39–7.47 (m, 2H, ArH), 

8.09 (d, 1H, J = 7.7 Hz, ArH), 8.24 (s, 1H, ArH), 8.26 (s, 1H, ArH), 11.62 (s, 1H, NH); 13C 

NMR (100 MHz, DMSO-d6) δ (ppm): 18.07, 111.20, 114.98, 119.19, 120.18, 121.08, 
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123.57, 126.46, 128.50, 139.18, 146.53, 150.52; MS (EI, 70 eV) m/z: 195.1 [M]+; HRMS 

(EI) m/z: calculated for C12H10N2O: 198.0793; found: 198.0799.

4.2.3.2. (9-Benzyl-9H-pyrido[2,3-b]indol-3-yl)methanol (31): Yield: 29%; mp: 141–142 

°C; IR (KBr) ν (cm−1): 3392 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 4.68 (d, J = 

5.2 Hz, 2H, −CH2OH), 5.34 (t, J = 5.4 Hz, 1H, −CH2OH), 5.68 (s, 2H, N-CH2), 7.17–7.28 

(m, 6H, ArH), 7.49 (t, J = 8.0 Hz, 1H, ArH), 7.58 (d, J = 8.0 Hz, 1H, ArH), 8.20 (d, J = 7.6 

Hz, 1H, ArH), 8.46 (d, J = 2.0 Hz, 1H, ArH), 8.51 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 44.26, 61.48, 110.21, 114.91, 120.03, 120.10, 121.48, 126.95, 

127.14 (2C), 127.41, 127.91, 128.68 (2C), 129.60, 137.87, 139.47, 145.78, 150.61; MS (EI, 

70 eV) m/z: 288.2 [M]+; HRMS (EI) m/z: calculated for C19H16N2O: 288.1263; found: 

288.1265.

4.2.3.3. (9-(2-Methoxybenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (32): Yield: 19%; 

mp: 167–168 °C; IR (KBr) ν (cm−1): 3242 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

3.90 (s, 3H, −OCH3), 4.67 (d, J = 4.5 Hz, 2H,−CH2OH), 5.31 (t, J = 4.5 Hz, 1H, −CH2OH), 

5.63 (s, 2H, N-CH2), 6.40 (d, J = 7.5 Hz, 1H, ArH) 6.65 (t, J = 7.5 Hz, 1H, ArH), 7.04 (d, J 

= 8.2 Hz, 1H, ArH) 7.15–7.29 (m, 2H, ArH), 7.40–7.47 (m, 2H, ArH), 8.23 (d, J = 8.0 Hz, 

1H, ArH), 8.41 (d, J = 2.0 Hz, 1H, ArH), 8.52 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, 

DMSO-d6) δ (ppm): 40.33, 55.51, 61.37, 109.97, 110.82, 114.81, 119.86, 119.90, 120.28, 

121.37, 125.10, 126.58, 126.84, 127.74, 128.42, 129.49, 139.64, 145.62, 150.60, 156.53; 

MS (EI, 70 eV) m/z: 318.1 [M]+; HRMS (EI) m/z: calculated for C20H18N2O2: 318.1368; 

found: 318.1362.

4.2.3.4. (9-(3-Methoxybenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (33): Yield: 5%; mp: 

164–165 °C; IR (KBr) ν (cm−1): 3284 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 3.64 

(s, 3H, −OCH3), 4.68 (d, J = 4.0 Hz, 2H, −CH2OH), 5.29 (t, J = 4.0 Hz, 1H, −CH2OH), 5.66 

(s, 2H, N-CH2), 6.71–6.83 (m, 3H, ArH) 7.14 (t, J = 7.6 Hz, 1H, ArH), 7.24 (t, J = 7.2 Hz, 

1H, ArH), 7.46 (t, J = 7.0 Hz, 1H, ArH), 7.59 (d, J = 8.0 Hz, 1H, ArH), 8.21 (d, J = 7.8 Hz, 

1H, ArH), 8.46 (d, J = 2.0 Hz, 1H, ArH), 8.52 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, 

DMSO-d6) δ (ppm): 44.04, 54.91, 61.34, 110.11, 112.15, 113.21, 114.72, 119.06, 119.89 

(2C), 121.32, 126.74, 127.71, 129.51, 129.65, 139.35 (2C), 145.61, 150.48, 159.32; MS (EI, 

70 eV) m/z: 318.2 [M]+; HRMS (EI) m/z: calculated for C20H18N2O2: 318.1368; found: 

318.1371.

4.2.3.5. (9-(4-Methoxybenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (34): Yield: 28%; 

mp: 163–165 °C; IR (KBr) ν (cm−1): 3385 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

3.64 (s, 3H, −OCH3), 4.68 (d, J = 5.2 Hz, 2H, −CH2OH), 5.32 (t, J = 5.6 Hz, 1H, −CH2OH), 

5.61 (s, 2H, N-CH2), 6.80 (d, J = 8.0 Hz, 2H, ArH), 7.19–7.27 (m, 3H, ArH), 7.46 (t, J = 8.2 

Hz, 1H, ArH), 7.61 (d, J = 8.2 Hz, 1H, ArH), 8.19 (d, J = 8.0 Hz, 1H, ArH), 8.47 (d, J = 2.0 

Hz, 1H, ArH), 8.50 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

43.60, 55.03, 61.39, 110.18, 113.93 (2C), 114.76, 119.90 (2C), 121.33, 126.72, 127.72, 

128.55 (2C), 129.44, 129.74, 139.27, 145.65, 150.47, 158.51; MS (EI, 70 eV) m/z: 318.2 

[M]+; HRMS (EI) m/z: calculated for C20H18N2O2: 318.1368; found: 318.1376.
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4.2.3.6. (9-(3,5-Dimethoxybenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (35): Yield: 

50%; mp: 140–141 °C; IR (KBr) ν (cm−1): 3356 (OH); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.61 (s, 6H, 2 × −OCH3), 4.68 (d, J = 4.4 Hz, 2H, −CH2OH), 5.33 (t, J = 5.0 Hz, 1H, 

−CH2OH), 5.61 (s, 2H, N-CH2), 6.35 (s, 3H, ArH) 7.25 (t, J = 7.2 Hz, 1H, ArH), 7.46 (t, J = 

7.8 Hz, 1H, ArH), 7.59 (d, J = 8.0 Hz, 1H, ArH), 8.21 (d, J = 7.6 Hz, 1H, ArH), 8.46 (d, J = 

2.0 Hz, 1H, ArH), 8.51 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 

44.17, 55.11 (2C), 61.40, 98.31, 105.36 (2C), 110.20, 114.79, 119.91, 120.01, 121.39, 

126.84, 127.81, 129.57, 139.45, 140.15, 145.66, 150.54, 160.63 (2C); MS (EI, 70 eV) m/z: 

348.1 [M]+; HRMS (EI) m/z: calculated for C21H20N2O3: 348.1474; found: 348.1479.

4.2.3.7. (9-(3,4,5-Trimethoxybenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (36): Yield: 

27%; mp: 146–147 °C; IR (KBr) ν (cm−1): 3385 (OH); 1H NMR (200 MHz, DMSO-d6) δ 

(ppm): 3.56 (s, 3H, −OCH3), 3.60 (s, 6H, 2 × −OCH3), 4.69 (d, 2H, J = 5.2 Hz, −CH2OH), 

5.32 (t, J = 5.4 Hz, 1H, −CH2OH), 5.60 (s, 2H, N-CH2), 6.66 (s, 2H, ArH), 7.24 (t, J = 7.2 

Hz, 1H, ArH), 7.47 (t, J = 7.7 Hz, 1H, ArH), 7.68 (d, J = 8.2 Hz, 1H, ArH), 8.20 (d, J = 7.6 

Hz, 1H, ArH), 8.48 (d, J = 2.0 Hz, 1H, ArH), 8.51 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 44.49, 55.88 (2C), 60.02, 61.36, 104.93 (2C), 110.23, 114.80, 

119.92 (2C), 121.34, 126.80, 127.74, 129.49, 133.51, 136.83, 139.45, 145.55, 150.53, 

152.93 (2C); MS (EI, 70 eV) m/z: 378.1 [M]+; HRMS (EI) m/z: calculated for C22H22N2O4: 

378.1580; found: 378.1588.

4.2.3.8. (9-(2-Chlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (37): Yield: 24%; mp: 

184–185 °C; IR (KBr) ν (cm−1): 3221 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 4.67 

(d, J = 4.4 Hz, 2H, −CH2OH), 5.33 (t, J = 5.1 Hz, 1H, −CH2OH), 5.75 (s, 2H, N-CH2), 6.40 

(d, J = 7.6 Hz, 1H, ArH), 7.07 (t, J = 7.4 Hz, 1H, ArH), 7.21–7.32 (m, 2H, ArH), 7.41–7.54 

(m, 3H, ArH), 8.26 (d, J = 7.6 Hz, 1H, ArH), 8.39 (s, 1H, ArH), 8.54 (s, 1H, ArH); 13C 

NMR (50 MHz, DMSO-d6) δ (ppm): 42.16, 61.33, 109.91, 114.93, 120.03, 120.25, 121.56, 

127.04, 127.17, 127.48, 127.93, 128.98, 129.58, 129.86, 131.66, 134.74, 139.47, 145.71, 

150.43; MS (EI, 70 eV) m/z: 322.1 [M]+; HRMS (EI) m/z: calculated for C19H15ClN2O: 

322.0873; found: 322.0878.

4.2.3.9. (9-(3-Chlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (38): Yield: 21%; mp: 

112–113 °C; IR (KBr) ν (cm−1): 3354 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 4.68 

(d, J = 5.5 Hz, 2H, −CH2OH), 5.33 (t, J = 5.5 Hz, 1H, −CH2OH), 5.71 (s, 2H, N-CH2), 

7.12–7.30 (m, 5H, ArH), 7.48 (t, J = 7.8 Hz, 1H, ArH), 7.63 (d, J = 8.1Hz, 1H, ArH), 8.22 

(d, J = 7.6 Hz, 1H, ArH), 8.46 (d, J = 2.0 Hz, 1H, ArH), 8.53 (d, J = 2.0 Hz, 1H, ArH); 13C 

NMR (50 MHz, DMSO-d6) δ (ppm): 43.98, 61.75, 110.44, 115.24, 120.36, 120.56, 121.89, 

126.13, 127.31 (2C), 127.74, 128.30, 130.16, 130.97, 133.58, 139.65, 140.81 (2C), 146.12, 

150.80; MS (EI, 70 eV) m/z: 322.1 [M]+; HRMS (EI) m/z: calculated for C19H15ClN2O: 

322.0873; found: 322.0879.

4.2.3.10. (9-(4-Chlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (39): Yield: 20%; 

mp: 163–164 °C; IR (KBr) ν (cm−1): 3221 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.68 (d, J = 5.4 Hz, 2H, −CH2OH), 5.32 (t, J = 5.6 Hz, 1H, −CH2OH), 5.69 (s, 2H, N-CH2), 

7.22–7.34 (m, 5H, ArH), 7.46 (t, J = 7.2 Hz, 1H, ArH), 7.60 (d, J = 8.2 Hz, 1H, ArH), 8.22 
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(d, J = 7.7 Hz, 1H, ArH), 8.46 (d, J = 2.0 Hz, 1H, ArH), 8.52 (d, J = 2.0 Hz, 1H, ArH); 13C 

NMR (50 MHz, DMSO-d6) δ (ppm): 43.45, 61.32, 110.02, 114.79, 119.94, 120.03, 121.41, 

126.83, 127.80, 128.53 (2C), 128.93 (2C), 129.65, 131.87, 136.82, 139.20, 145.65, 150.37; 

MS (EI, 70 eV) m/z: 322.1 [M]+; HRMS (EI) m/z: calculated for C19H15ClN2O: 322.0873; 

found: 322.0878.

4.2.3.11. (9-(2,3-Dichlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (40): Yield: 13%; 

mp: 176–177 °C; IR (KBr) ν (cm−1): 3221 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.67 (d, J = 4.9 Hz, 2H, −CH2OH), 5.36 (t, J = 1.4 Hz, 1H, −CH2OH), 5.77 (s, 2H, N-CH2), 

6.30 (d, J = 7.7 Hz, 1H, ArH), 7.09 (t, J = 8.0 Hz, 1H, ArH), 7.29 (t, J = 8.0 Hz, 1H, ArH), 

7.42–7.53 (m, 3H, ArH), 8.26 (d, J = 8.0 Hz, 1H, ArH), 8.38 (d, J = 2.0 Hz, 1H, ArH), 8.54 

(d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 42.89, 61.34, 109.96, 

115.03, 120.09, 120.42, 121.62, 125.54, 127.15, 127.99, 128.41, 129.34, 129.62, 130.02, 

132.22, 137.55, 139.45, 145.74, 150.36; MS (EI, 70 eV) m/z: 356.1 [M]+; HRMS (EI) m/z: 

calculated for C19H14Cl2N2O: 356.0483; found: 356.0487.

4.2.3.12. (9-(2,4-Dichlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (41): Yield: 19%; 

mp: 153–154 °C; IR (KBr) ν (cm−1): 3209 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.67 (d, J = 6.0 Hz, 2H, −CH2OH), 5.34 (t, J = 6.0 Hz, 1H, −CH2OH), 5.73 (s, 2H, N-CH2), 

6.43 (d, J = 8.4 Hz, 1H, ArH), 7.18 (dd, J = 8.0, 2.0 Hz, 1H, ArH), 7.25–7.33 (m, 1H, ArH), 

7.42–7.49 (m, 2H, ArH), 7.07 (d, J = 2.0 Hz, 1H, ArH), 8.26 (d, J = 7.7 Hz, 1H, ArH), 8.40 

(s, 1H, ArH), 8.54 (s, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 41.84, 61.30, 

109.87, 114.97, 120.07, 120.34, 121.58, 127.08, 127.67, 127.94, 128.60, 129.05, 129.96, 

132.62 (2C), 134.02, 139.35, 145.70, 150.33; MS (EI, 70 eV) m/z: 356.1 [M]+; HRMS (EI) 

m/z: calculated for C19H14Cl2N2O: 356.0483; found: 356.0480.

4.2.3.13. (9-(2,6-Dichlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (42): Yield: 6%; 

mp: 101–102 °C; IR (KBr) ν (cm−1): 3331 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.66 (d, J = 5.1 Hz, 2H, −CH2OH), 5.30 (t, J = 1.8 Hz, 1H, −CH2OH), 5.90 (s, 2H, N-CH2), 

7.17–7.23 (m, 2H, ArH), 7.33–7.52 (m, 4H, ArH), 8.19 (d, J = 8.0 Hz, 1H, ArH), 8.41 (s, 

1H, ArH), 8.47 (s, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 41.45, 61.33, 109.72, 

114.60, 119.84, 120.27, 121.41, 126.70, 127.54, 129.12 (2C), 129.47, 130.55, 131.63, 

135.68 (2C), 139.23, 145.36, 150.74; MS (EI, 70 eV) m/z: 356.1 [M]+; HRMS (EI) m/z: 

calculated for C19H14Cl2N2O: 356.0483; found: 356.0488.

4.2.3.14. (9-(3,4-Dichlorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (43): Yield: 23%; 

mp: 159–160 °C; IR (KBr) ν (cm−1): 3329 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.68 (d, J = 4.7 Hz, 2H, −CH2OH), 5.34 (t, J = 4.7 Hz, 1H, −CH2OH), 5.70 (s, 2H, N-CH2), 

7.12 (dd, J = 1.9, 8.3 Hz, 1H, ArH), 7.26 (t, J = 7.4 Hz, 1H, ArH), 7.44–7.66 (m, 4H, ArH), 

8.22 (d, J = 7.7 Hz, 1H, ArH), 8.46 (d, J = 2.0 Hz, 1H, ArH), 8.53 (d, J = 2.0 Hz, 1H, 

ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 43.06, 61.32, 109.99, 114.88, 119.98, 

120.23, 121.51, 126.99, 127.35, 127.93, 129.16, 129.84, 129.96, 130.87, 131.12, 139.05, 

139.15, 145.70, 150.31; MS (EI, 70 eV) m/z: 356.1 [M]+; HRMS (EI) m/z: calculated for 

C19H14Cl2N2O: 356.0483; found: 356.0492.
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4.2.3.15. (9-(2-Fluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (44): Yield: 15%; 

mp: 104–105 °C; IR (KBr) ν (cm−1): 3228 (OH); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

4.68 (d, J = 5.2 Hz, 2H, −CH2OH), 5.30 (t, J = 5.6 Hz, 1H, −CH2OH), 5.74 (s, 2H, N-CH2), 

6.86 (t, J = 7.6 Hz, 1H, ArH), 7.99 (t, J = 7.2 Hz, 1H, ArH), 7.19–7.28 (m, 3H, ArH), 7.47 

(t, J = 8.0 Hz, 1H, ArH), 7.55 (d, J = 8.0 Hz, 1H, ArH), 8.22 (d, J = 7.6 Hz, 1H, ArH), 8.43 

(s, 1H, ArH), 8.51 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 38.26, 61.31, 

109.78, 114.84, 115.44 (d, 2JCF = 21.0 Hz), 119.96, 120.06, 121.40, 124.38 (d, 2JCF = 15.0 

Hz), 124.55 (d, 4JCF = 4.0 Hz), 126.87, 127.74, 128.74 (d, 3JCF = 4.0 Hz), 129.38 (d, 3JCF = 

9.0 Hz), 129.68, 139.34, 145.62, 150.41, 159.93 (d, 1JCF = 243.0 Hz); MS (EI, 70 eV) m/z: 

306.2 [M]+; HRMS (EI) m/z: calculated for C19H15FN2O: 306.1168; found: 306.1165.

4.2.3.16. (9-(4-Fluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (45): Yield: 9%; mp: 

153–154 °C; IR (KBr) ν (cm−1): 3298 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 4.68 

(d, J = 3.5 Hz, 2H, −CH2OH), 5.34 (t, J = 4.0 Hz, 1H, −CH2OH), 5.68 (s, 2H, N-CH2), 

7.03–7.12 (m, 2H, ArH), 7.21–7.33 (m, 3H, ArH), 7.46 (t, J = 8.0 Hz, 1H, ArH), 7.62 (d, J = 

8.2 Hz, 1H, ArH), 8.21 (d, J = 7.5 Hz, 1H, ArH), 8.47 (d, J = 2.0 Hz, 1H, ArH), 8.52 (d, J = 

2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ (ppm): 43.45, 61.39, 110.10, 114.85, 

115.37 (d, 2JCF = 21.0 Hz, 2C), 119.97, 120.03, 121.44, 126.87, 127.84, 129.19 (d, 3JCF = 

8.0 Hz, 2C), 129.64, 134.04 (d, 4JCF = 2.5 Hz), 139.25, 145.72, 150.43, 161.48 (d, 1JCF = 

241.5 Hz); MS (EI, 70 eV) m/z: 306.1 [M]+; HRMS (EI) m/z: calculated for C19H15FN2O: 

306.1168; found: 306.1165.

4.2.3.17. (9-(2,4-Difluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (46): Yield: 13%; 

mp: 150–151 °C; IR (KBr) ν (cm−1): 3327 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.67 (d, J = 5.1 Hz, 2H, −CH2OH), 5.34 (t, J = 4.5 Hz, 1H, −CH2OH), 5.71 (s, 2H, N-CH2), 

6.85–7.03 (m, 2H, ArH), 7.20–7.31 (m, 2H, ArH), 7.44–7.59 (m, 2H, ArH), 8.22 (d, J = 7.7 

Hz, 1H, ArH), 8.44 (d, J = 2.0 Hz, 1H, ArH), 8.52 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 38.03, 61.37, 103.63, 104.14 (dd, 2JCF = 26.0, 25.5 Hz), 109.86, 

111.76 (dd, 2JCF = 21.5 Hz, 4JCF = 3.0 Hz), 114.95, 120.05, 120.23, 120.88 (dd, 2JCF = 15.0 

Hz, 4JCF = 3.5 Hz), 121.52, 127.01, 127.88, 129.81, 130.24 (dd, 3JCF = 4.0, 10.0 Hz), 

139.30, 145.71, 150.41, 159.91 (d, 1J = 246.0 Hz), 161.77 (d, 1JCF = 246.0 Hz); MS (EI, 70 

eV) m/z: 324.1 [M]+; HRMS (EI) m/z: calculated for C19H14F2N2O: 324.1074; found: 

324.1079.

4.2.3.18. (9-(2,5-Difluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (47): Yield: 11%; 

mp: 110–111 °C; IR (KBr) ν (cm−1): 3385 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.68 (d, J = 5.2 Hz, 2H, −CH2OH), 5.32 (t, J = 5.0 Hz, 1H, −CH2OH), 5.73 (s, 2H, N-CH2), 

6.62–6.71 (m, 1H, ArH), 7.09–7.35 (m, 3H, ArH), 7.45–7.61 (m, 2H, ArH), 8.24 (d, J = 7.6 

Hz, 1H, ArH), 8.44 (d, J = 2.0 Hz, 1H, ArH), 8.53 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 

MHz, DMSO-d6) δ (ppm): 38.03, 61.03, 109.79, 114.92, 115.66 (dd, 2JCF = 23.5 Hz, 3JCF = 

4.5 Hz), 115.76 (dd, 2JCF = 24.5 Hz, 3JCF = 8.0 Hz), 117.22 (dd, 2JCF = 24.5 Hz, 3JCF = 9.0 

Hz), 120.01, 120.24, 121.50, 126.56 (dd, 2JCF = 18.0 Hz, 3JCF = 8.0 Hz), 126.98, 127.87, 

129.86, 139.22, 145.66, 150.30, 156.11 (d, 1JCF = 239.5 Hz), 158.01 (d, 1JCF = 239.0 Hz); 

MS (EI, 70 eV) m/z: 324.1 [M]+; HRMS (EI) m/z: calculated for C19H14F2N2O: 324.1074; 

found: 324.1076.

Lin et al. Page 18

Eur J Med Chem. Author manuscript; available in PMC 2017 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.2.3.19. (9-(2,6-Difluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (48): Yield: 29%; 

mp: 156–157 °C; IR (KBr) ν (cm−1): 3317 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.66 (d, J = 5.3 Hz, 2H, −CH2OH), 5.30 (t, J = 5.6 Hz, 1H, −CH2OH), 5.75 (s, 2H, N-CH2), 

7.05 (t, J = 7.9 Hz, 2H, ArH), 7.19–7.53 (m, 4H, ArH), 8.19 (d, J = 8.0 Hz, 1H, ArH), 8.43 

(d, J = 2.0 Hz, 1H, ArH), 8.48 (d, J = 2.0 Hz, 1H, ArH); 13C NMR (50 MHz, DMSO-d6) δ 

(ppm): 33.38, 61.31, 109.44, 111.75 (d, 2JCF = 24.0 Hz, 2C), 112.64 (dd, 2JCF = 17.5, 18.0 

Hz), 114.69, 119.91, 120.03, 121.33, 126.72, 127.51, 129.52, 130.33 (dd, 3JCF = 10.0, 10.5 

Hz), 139.18, 145.48, 150.32, 161.07 (dd, 1JCF = 247.5 Hz, 3JCF = 8.0 Hz, 2C); MS (EI, 70 

eV) m/z: 324.1 [M]+; HRMS (EI) m/z: calculated for C19H14F2N2O: 324.1074; found: 

324.1064.

4.2.3.20. (9-(3,4-Difluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (49): Yield: 12%; 

mp: 139–140 °C; IR (KBr) ν (cm−1): 3311 (OH); 1H NMR (200 MHz, DMSO-d6) δ (ppm): 

4.68 (d, J = 4.1 Hz, 2H, −CH2OH), 5.36 (t, J = 4.9 Hz, 1H, −CH2OH), 5.68 (s, 2H, N-CH2), 

6.99–7.02 (t, J = 6.5 Hz, 1H, ArH), 7.22–7.52 (m, 4H, ArH), 7.65 (d, J = 8.1 Hz, 1H, ArH), 

8.22 (d, J = 7.7 Hz, 1H, ArH), 8.46 (s, 1H, ArH), 8.52 (s, 1H, ArH); 13C NMR (50 MHz, 

DMSO-d6) δ (ppm): 43.20, 61.37, 110.06, 114.92, 116.36 (d, 2JCF = 17.5 Hz), 117.75 

(d, 2JCF = 17.5 Hz), 120.01, 120.21, 121.52, 123.89 (dd, 3JCF = 6.0 Hz, 4JCF = 3.5 Hz), 

126.99, 127.95, 129.80, 135.64 (dd, 3JCF = 4.0 Hz, 4JCF = 3.5 Hz), 139.19, 145.74, 148.70 

(d, 1JCF = 255.0 Hz), 149.02 (d, 1JCF = 261.5 Hz), 150.36; MS (EI, 70 eV) m/z: 324.1 [M]+; 

HRMS (EI) m/z: calculated for C19H14F2N2O: 324.1074; found: 324.1076.

4.2.3.21. (9-(3,5-Difluorobenzyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (50): Yield: 13%; 

mp: 110–111 °C; IR (KBr) ν (cm−1): 3317 (OH); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

4.69 (d, J = 6.1 Hz, 2H, −CH2OH), 5.31 (t, J = 5.5 Hz, 1H, −CH2OH), 5.71 (s, 2H, N-CH2), 

6.91 (d, J = 6.6 Hz, 2H, ArH), 7.07 (t, J = 8.0 Hz, 1H, ArH), 7.27 (t, J = 7.5 Hz, 1H, ArH), 

7.49 (t, J = 7.9 Hz, 1H, ArH), 7.63 (d, J = 8.2 Hz, 1H, ArH), 8.22 (d, J = 7.7 Hz, 1H, ArH), 

8.46 (s, 1H, ArH), 8.52 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 43.66, 

61.51, 103.06 (dd, 2JCF = 26.0, 25.0 Hz), 110.14, 110.36 (d, 2JCF = 25.0 Hz, 2C), 115.08, 

120.19, 120.43, 121.68, 127.17, 128.09, 130.06, 139.38, 142.70 (dd, 3JCF = 8.5, 9.5 Hz), 

145.89, 150.52, 162.63 (dd, 1JCF = 246.0 Hz, 3JCF = 13.0 Hz, 2C); MS (EI, 70 eV) m/z: 

324.2 [M]+; HRMS (EI) m/z: calculated for C19H14F2N2O: 324.1074; found: 324.1066.

4.2.3.22. (9-((Benzo[d][1,3]dioxol-5-yl)methyl)-9H-pyrido[2,3-b]indol-3-yl) methanol 
(51): Yield: 13%; mp: 101–102 °C; IR (KBr) ν (cm−1): 3282 (OH); 1H NMR (400 MHz, 

DMSO-d6) δ (ppm): 4.69 (d, 2H, J = 4.8 Hz, −CH2OH), 5.30 (t, 1H, J = 5.2 Hz, −CH2OH), 

5.59 (s, 2H, N-CH2), 5.91 (s, 2H, −OCH2O–), 6.77 (s, 2H, ArH), 6.85 (s, 1H, ArH), 7.24 (t, 

1H, J = 7.2 Hz, ArH), 7.47 (t, 1H, J = 8.0 Hz, ArH), 7.63 (d, 1H, J = 8.0 Hz, ArH), 8.20 (d, 

1H, J = 7.6 Hz, ArH), 8.47 (s, 1H, ArH), 8.50 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-

d6) δ (ppm): 43.89, 61.36, 100.94, 107.77, 108.23, 110.17, 114.77, 119.91, 120.54, 121.33, 

126.76, 127.74, 129.50, 131.58, 139.22, 145.64, 146.45, 147.33, 150.41; MS (EI, 70 eV) 

m/z: 332.2 [M]+; HRMS (EI) m/z: calculated for C20H16N2O3: 332.1161; found: 332.1164.

4.2.3.23. (9-((Furan-2-yl)methyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (52): Yield: 11%; 

mp: 120–121 °C; IR (KBr) ν (cm−1): 3338 (OH); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 
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4.68 (s, 2H, −CH2OH), 5.32 (t, 1H, J = 5.0 Hz, −CH2OH), 5.68 (s, 2H, N-CH2), 6.34 (s, 1H, 

ArH), 6.41 (s, 1H, ArH), 7.25 (t, 1H, J = 7.3 Hz, ArH), 7.47–7.51 (m, 2H, ArH), 7.70 (d, 

1H, J = 7.6 Hz, ArH), 8.18 (d, 1H, J = 6.9 Hz, ArH), 8.45 (s, 1H, ArH), 8.47 (s, 1H, 

ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 37.56, 61.37, 108.31, 110.23, 110.53, 

114.82, 120.06 (2C), 121.30, 126.77, 127.70, 129.61, 139.27, 142.67, 145.58, 150.21, 

150.53; MS (EI, 70 eV) m/z: 278.1 [M]+; HRMS (EI) m/z: calculated for C17H14N2O2: 

278.1055; found: 278.1049.

4.2.3.24. (9-((Furan-3-yl)methyl)-9H-pyrido[2,3-b]indol-3-yl)methanol (53): Yield: 16%; 

mp: 115–116 °C; IR (KBr) ν (cm−1): 3336 (OH); 1H NMR (400 MHz, DMSO-d6) δ (ppm): 

4.68 (d, 2H, J = 4.7 Hz, −CH2OH), 5.34 (t, 1H, J = 5.2 Hz, −CH2OH), 5.51 (s, 2H, N-CH2), 

6.28 (s, 1H, ArH), 7.25 (t, 1H, J = 7.3 Hz, ArH), 7.47–7.50 (m, 2H, ArH), 7.67–7.70 (m, 2H, 

ArH), 8.19 (d, 1H, J = 7.7 Hz, ArH), 8.46 (s, 1H, ArH), 8.47 (s, 1H, ArH); 13C NMR (100 

MHz, DMSO-d6) δ (ppm): 35.53, 61.41, 110.09, 110.45, 114.87, 119.94, 121.38, 121.60, 

126.78, 127.76, 129.44, 139.21, 140.69 (2C), 143.69, 145.61, 150.28; MS (EI, 70 eV) m/z: 

278.1 [M]+; HRMS (EI) m/z: calculated for C17H14N2O2: 278.1055; found: 278.1049.

4.2.3.25. (9-((Thiophen-2-yl)methyl)-9H-pyrido[2,3-b]indol-3-yl) methanol (54): Yield: 

11%; mp: 113–114 °C; IR (KBr) ν (cm−1): 3329 (OH); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 4.68 (d, 2H, J = 4.7 Hz, −CH2OH), 5.34 (t, 1H, J = 5.2 Hz, −CH2OH), 5.86 (s, 2H, 

N-CH2), 6.90 (t, 1H, J = 3.9 Hz, ArH), 7.18 (d, 1H, J = 2.6 Hz, ArH), 7.23–7.30 (m, 2H, 

ArH), 7.49 (t, 1H, J = 7.8 Hz, ArH), 7.74 (d, 1H, J = 8.2 Hz, ArH), 8.19 (d, 1H, J = 7.7 Hz, 

ArH), 8.48 (s, 1H, ArH), 8.49 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 

39.25, 61.73, 110.53, 115.30, 120.43 (2C), 121.75, 126.04, 127.06 (2C), 127.09, 128.12, 

130.03, 139.34, 140.26, 145.93, 150.39; MS (EI, 70 eV) m/z: 294.1 [M]+; HRMS (EI) m/z: 

calculated for C17H14N2OS: 294.0827; found: 294.0830.

4.2.3.26. (9-((Thiophen-3-yl)methyl)-9H-pyrido[2,3-b]indol-3-yl) methanol (55): Yield: 

40%; mp: 124–125 °C; IR (KBr) ν (cm−1): 3354 (OH); 1H NMR (400 MHz, DMSO-d6) δ 

(ppm): 4.68 (d, 2H, J = 5.3 Hz, −CH2OH), 5.30 (t, 1H, J = 5.4 Hz, −CH2OH), 5.66 (s, 2H, 

N-CH2), 6.97 (d, 1H, J = 4.7 Hz, ArH), 7.25 (t, 1H, J = 7.4 Hz, ArH), 7.37–7.40 (m, 2H, 

ArH), 7.48 (t, 1H, J = 7.8 Hz, ArH), 7.69 (d, 1H, J = 8.2 Hz, ArH), 8.20 (d, 1H, J = 7.7 Hz, 

ArH), 8.47 (s, 1H, ArH), 8.49 (s, 1H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 

39.08, 61.34, 110.05, 114.77, 119.85 (2C), 121.30, 122.74, 126.72 (2C), 127.22, 127.67, 

129.44, 138.36, 139.20, 145.56, 150.21; MS (EI, 70 eV) m/z: 294.1 [M]+; HRMS (EI) m/z: 

calculated for C17H14N2OS: 294.0827; found: 294.0823.

4.2.4. Preparation of 9-substituted-9H-pyrido[2,3-b]indole-3-carboxylic acid 
(56–58)—Compound 6, 10, or 11 (1 equiv) was dissolved in 50% MeOH solution (20 mL), 

and NaOH (2 equiv) was added. The mixture was heated under reflux for 1 h and then 

cooled and acidified with dilute HCl. The precipitate was collected and recrystallized from 

MeOH to yield the pure compound (56–58).

4.2.4.1. 9-Benzyl-9H-pyrido[2,3-b]indole-3-carboxylic acid (56): Yield: 95%; mp: 238–

239 °C; IR (KBr) ν (cm−1): 1683 (C=O), 2808–3066 (OH); 1H NMR (400 MHz, DMSO-d6) 
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δ (ppm): 5.68 (s, 2H, N-CH2), 7.17–7.24 (m, 5H, ArH), 7.29 (t, 1H, J = 7.3 Hz, ArH), 7.49 

(t, 1H, J = 7.9 Hz, ArH), 7.57 (d, 1H, J = 8.2 Hz, ArH), 8.27 (d, 1H, J = 7.7 Hz, ArH), 9.02 

(s, 2H, ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 44.76, 110.90, 115.18, 118.93, 

120.32, 121.44, 122.26, 127.39 (2C), 127.87, 128.04, 129.01 (2C), 130.39, 137.45, 140.00, 

148.44, 153.05, 167.59; MS (EI, 70 eV) m/z: 302.1 [M]+; HRMS (EI) m/z: calculated for 

C19H14N2O2: 302.1055; found: 302.1059.

4.2.4.2. 9-(3,5-Dimethoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylic acid (57): Yield: 

27%; mp: 263–264 °C; IR (KBr) ν (cm−1): 1595 (C=O), 3136–3502 (OH); 1H NMR (400 

MHz, DMSO-d6) δ (ppm): 3.60 (s, 6H, 2 × −OCH3), 5.61 (s, 2H, N-CH2), 6.32 (s, 1H, 

ArH), 6.35(s, 2H, ArH), 7.25 (t, 1H, J = 7.4 Hz, ArH), 7.44 (t, 1H, J = 7.8 Hz, ArH), 7.56 

(d, 1H, J = 8.2 Hz, ArH), 8.20 (d, 1H, J = 7.6 Hz, ArH), 8.91 (s, 1H, ArH), 9.00 (s, 1H, 

ArH); 13C NMR (100 MHz, DMSO-d6) δ (ppm): 44.24, 55.11 (2C), 98.44, 105.35 (2C), 

110.17, 113.90, 120.05, 120.58, 121.24, 126.50, 128.34, 129.49, 139.44, 140.19, 148.59, 

151.42, 160.62 (2C), 168.46; MS (EI, 70 eV) m/z: 362.2 [M]+; HRMS (EI) m/z: calculated 

for C21H18N2O4: 362.1267; found: 362.1260.

4.2.4.3. 9-(3,4,5-Trimethoxybenzyl)-9H-pyrido[2,3-b]indole-3-carboxylic acid (58): 
Yield: 17%; mp: > 500 °C; IR (KBr) ν (cm−1): 1701 (C=O), 3319–3508 (OH); 1H NMR 

(400 MHz, DMSO-d6) δ (ppm): 3.56 (s, 3H, −OCH3), 3.60 (s, 6H, 2 × −OCH3), 5.65 (s, 2H, 

N-CH2), 6.69 (s, 2H, ArH), 7.32 (t, 1H, J = 7.2 Hz, ArH), 7.54 (t, 1H, J = 7.6 Hz, ArH), 

7.76 (d, 1H, J = 8.0 Hz, ArH), 8.34 (d, 1H, J = 7.6 Hz, ArH), 9.09 (s, 2H, ArH); 13C NMR 

(100 MHz, DMSO-d6) δ (ppm): 45.11, 56.20 (2C), 60.33, 105.33 (2C), 111.12, 115.20, 

119.07, 120.42, 121.35, 122.36, 127.97, 130.54, 133.31, 137.26, 140.15, 148.49, 153.14, 

153.34 (2C), 167.57; MS (EI, 70 eV) m/z: 391.2 [M]+; HRMS (EI) m/z: calculated for 

C22H20N2O5: 392.1372; found: 392.1364.

4.3. Biological evaluation

4.3.1. MTT assay for anti-proliferative activity—Human tumor cell lines of the cancer 

screening panel were maintained in RPMI-1640 medium supplemented with 10% fetal 

bovine serum (GIBCO/BRL), penicillin (100 U/mL)/streptomycin (100 μg/mL) (GIBCO/

BRL) and 1% L-glutamine (GIBCO/BRL) at 37 °C in a humidified atmosphere containing 

5% CO2. Human hepatoma Hep 3B and normal skin Detroit 551 cells were maintained in 

DMEM medium supplemented with 10% fetal bovine serum (GIBCO/BRL), penicillin (100 

U/mL)/streptomycin (100 μg/mL) (GIBCO/BRL) and 1% L-glutamine (GIBCO/BRL) at 37 

°C in a humidified atmosphere containing 5% CO2. Logarithmically growing cancer cells 

were used for all experiments. The human tumor cell lines were treated with vehicle or test 

compounds for 48 h. Cell growth rate was determined by MTT [3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyltetrazoliun bromide] reduction assay [31]. After 48 h treatment, cell growth 

rate was measured on the ELISA reader at a wavelength of 570 nm and the IC50 values of 

test compounds were calculated.

4.3.2. In vitro NCI-60 panel cancer cell lines study—The anticancer activities were 

tested through the Developmental Therapeutic Program (DTP) of National Cancer Institute 
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(NCI) [32]. For more information on the anticancer activities screening protocol, please see: 

http://dtp.nci.nih.gov/branches/btb/ivclsp.html.

4.3.3. Cell morphology and Hoechst 33258 staining—The Hoechst 33258 staining 

assays were conducted according to our previous report [33]. The COLO 205 cells were 

plated at a density of 2.5×105 cells per well in 12-well plates, and then incubated with 0.5 

μM of compound 11 for 12 h to 48 h. Cells were directly examined and photographed under 

a contrast-phase microscope. Nuclei were stained with Hoechst 33258 (bis-benzimide, 

Sigma) to detect chromatin condensation or nuclear fragmentation; characteristics of 

apoptosis. After 0, 12, 24, 36, and 48 h, compound 11-treated cells were stained with 5 

μg/mL Hoechst 33258 for 10 min. After washing twice with PBS, cells were fixed with 4% 

paraformaldehyde (PFA) in PBS for 10 min at 25 °C. Fluorescence of the soluble DNA 

(apoptotic) fragments was measured in a Varian Fluorometer at an excitation wavelength of 

365 nm and emission wavelength of 460 nm.

4.3.4. Apoptosis studies—Determination of apoptotic cells by fluorescent staining was 

done as described previously [34]. The Annexin V-FITC Apoptosis Detection Kit was 

obtained from Strong Biotech Corporation (Strong Biotech, Taiwan). The COLO 205 cells 

(2×105 cells/well) were fluorescently labeled for detection of apoptotic and necrotic cells by 

adding 100 μL of binding buffer, 2 μL of annexin V-FITC, and 2 μL of PI to each sample. 

Samples were mixed gently and incubated at room temperature in the dark for 15 min. 

Binding buffer (300 μL) was added to each sample immediately before flow cytometric 

analysis. A minimum of 10,000 cells within the gated region were analyzed.

4.3.5. Flow cytometric analysis for cell cycle—COLO 205 cells were added to 0.5 

μM compound 11 for 0, 12, 24, 36, and 48 h. Cells were fixed in 70% EtOH overnight, 

washed twice, and re-suspended in PBS containing 20 μg/mL PI, 0.2 mg/mL RNase A, and 

0.1% Triton X-100 in the dark room. After 30 min incubation at 37 °C, cell cycle 

distribution was analyzed using ModFit LT Software (Verity Software House, Topsham, 

USA) in a BD FACSCanto flow cytometer (Becton Dickinson, San Jose, CA).

4.3.6. Mitochondrial membrane potential analysis—Cells were plated on 6 well 

plate at 1.0×106 cells/well and treated with 0.5 μM compound 11 for 6, 12, 24, and 36 h. 

Mitochondrial membranes were stained with 0.5 mL JC-1 working solution (BD MitoScreen 

Kit) added to each sample. Samples were incubated for 10–15 min at 37 °C in the dark. 

Mitochondrial membrane potential was measured using the BD FACSCanto flow cytometer 

(Becton Dickinson, San Jose, CA).

4.3.7. Western Blot Assay—The treated cells (1×107 cells/10 mL in 10 cm dish) were 

collected and washed with PBS. After centrifugation, cells were lysed in a lysis buffer. The 

lysates were incubated on ice for 30 min and centrifuged at 12,000 g for 20 min. 

Supernatants were collected, and protein concentrations were then determined using a 

Bradford Assay. After adding a 5× sample loading buffer containing 625 mM Tris-HCl, pH 

= 6.8, 500 mM dithiothreitol, 10% SDS, 0.06% bromophenol blue, and 50% glycerol, 

protein samples were electrophoresed on 10% SDS-polyacrylamide gel, and transferred to a 

Lin et al. Page 22

Eur J Med Chem. Author manuscript; available in PMC 2017 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://dtp.nci.nih.gov/branches/btb/ivclsp.html


nitrocellulose membrane. Immunoreactivity was detected using the Western blot 

chemiluminescence reagent system (PerkinElmer, Boston, MA).

4.3.8. Statistical analysis—Statistical analysis was performed with an analysis of 

variance (ANOVA) followed by the Tukey's test. All data were expressed as mean ± SD 

from at least three independent experiments. *P < 0.001 was indicative of a significant 

difference.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

▶ 3,9-Substituted-α-carboline derivatives of YC-1 analogs were synthesized

▶ Structure-activity relationships were established based on antiproliferative 

effects

▶ Compound 11 showed good potency against four cancer cell types (IC50 0.3– 

0.8 μM)

▶ Compound 11 arrested cells in G2/M phase and induced apoptosis in COLO 

205 cells

▶ The apoptotic effects were produced via intrinsic and extrinsic signaling 

pathways
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Figure 1. 
Structures of YC-1 and its analogs.
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Figure 2. 
Rationally designed 3,9-substituted-α-carboline derivatives of YC-1 analogs.
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Figure 3. 
(A) Chemical structure of compound 11. (B) Effects of compound 11 on viability of COLO 

205 cells. COLO 205 cells were exposed to different concentrations of compound 11 for 48 

h. Cell viability was assessed using the MTT assay. The data are presented as mean ± SEM 

of three independent experiments. Cells without treatment served as a control. * p<0.001 vs. 

control. (C) Fluorescent images of Hoechst staining showing compound 11 induced cell 

death. The arrowhead indicates an apoptotic nucleus. COLO205 cells were treated with 0.5 

μM of compound 11 for 0 h, 12 h, 24 h, 36 h, and 48 h. (D) Confirmation of compound 11-

induced apoptosis was assessed using annexin V/PI staining and flow cytometry. The 

fraction of annexin V-positive COLO 205 cells was 5.5% prior to treatment and 5.9%, 9.1%, 

19.3%, and 20.1% after treatment with 0.5 μM of compound 11 for 12 h, 24 h, 36 h, and 48 

h, respectively. Scale bar=20 μm.
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Figure 4. 
Effects of compound 11 on the cell cycle in COLO 205 cells. (A) COLO 205 cells were 

incubated with 0.5 μM of compound 11 for 0 h, 12 h, 24 h, 36 h, and 48 h. They were then 

harvested and analyzed using flow cytometry. (B) compound 11 decreased cyclin B1 and 

CDK1 protein expression by western blot (n = 3 independent experiments). β-Actin was 

used as a loading control.
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Figure 5. 
Compound 11 induced caspase-3, caspase-8, and caspase-9 activity in COLO 205 cells. 

COLO 205 cells were treated with 0.5 μM of compound 11 for the indicated times and lysed 

for protein extraction. Protein samples (40 μg protein/lane) were separated using 10% SDS-

PAGE and subjected to immunoblotting with antibodies specific to caspase-9, caspase-8, 

caspase-3, PARP, and β-actin (n = 3 independent experiments). β-Actin was used as a 

loading control.
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Figure 6. 
Compound 11 induced the mitochondrial apoptosis pathway in COLO 205 cells. (A) Effects 

of compound 11 on mitochondrial membrane potential in COLO 205 cells. Cells (1 × 106 

cells/mL) were untreated or treated with compound 11 (0.5 μM, 6 h-36 h) to induce 

apoptosis. Cells were stained with JC-1 according to the protocol on a BD™ MitoScreen as 

described in the section Methods for Staining Cells with JC-1 and Analyzing by Flow 

Cytometry. (B) COLO 205 cells were treated with 0.5 μM of compound 11 for the indicated 

times and lysed for protein extraction. Protein samples (40 μg protein/lane) were separated 

using 10% SDS-PAGE and subjected to immunoblotting with antibodies specific to AIF, 

Endo G, Apaf-1, cytochrome c, (C) Bax, Bad, Bcl-xL, Bcl-2, and β-actin (n = 3 independent 

experiments). β-Actin was used as a loading control.

Lin et al. Page 32

Eur J Med Chem. Author manuscript; available in PMC 2017 March 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7. 
Compound 11 induced death receptor apoptosis pathway in COLO 205 cells. COLO 205 

cells were treated with 0.5 μM of compound 11 for the indicated times and lysed for protein 

extraction. Protein samples (40 μg protein/lane) were separated using 10% SDS-PAGE and 

subjected to immunoblotting with antibodies specific to Fas, DR4, DR5 (A), FasL, TRAIL 

(B), and β-actin (n = 3 independent experiments). β-Actin was used as a loading control.
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Figure 8. 
Expression of MAPKs in the compound 11-treated COLO 205 cells. COLO 205 cells were 

treated with 0.5 μM of compound 11 for the indicated times and lysed for protein extraction. 

Protein samples (40 μg protein/lane) were separated using 10% SDS-PAGE and subjected to 

immunoblotting with antibodies specific to ERK1/2, phosphor-ERK1/2, JNK, phosphor-

JNK, p38, phosphor-p38 and β-actin (n = 3 independent experiments). β-Actin was used as a 

loading control.
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Scheme 1. 
Reagents and conditions : (i) 150-160 °C, 1.5 h; (ii) 150-160 °C, PPA, then heating at 180 

°C for 0.5 h. (iii) Ca(BH4)2, THF, r. t.; (iv) KOH, THF, reflux; (v) NaOH, Methanol, H2O, 

reflux.
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Table 1

Cytotoxic activities of 3,9-substituted-α-carbolines.

Compd R3 R9
IC50 (μM)

a

HL-60
b

COLO205
b

Hep3B
b

H460
b

A498
b

Detroit551
b

4 COOCH3 H 50 >50 >50 27.7 46.6 >50

5 CH2OH H 49.7 – – – – >50

6 COOCH3 benzyl >50 >50 >50 >50 >50 >50

7 COOCH3 2-methoxybenzyl 4.0 12.4 24.2 22.8 43.1 100

8 COOCH3 3-methoxybenzyl 4.4 >50 19.8 33.2 >50 >50

9 COOCH3 4-methoxybenzyl >50 >50 >50 >50 >50 100

10 COOCH3 3,5-dimethoxybenzyl 0.6 5.56 2.5 3.0 >50 100

11 COOCH3 3,4,5-trimethoxybenzyl 0.3 0.49 0.7 0.8 >50 >50

12 COOCH3 2-chlorobenzyl 25 >50 >50 >50 >50 >50

13 COOCH3 3-chlorobenzyl 7.1 >50 >50 50 >50 >50

14 COOCH3 4-chlorobenzyl >50 >50 >50 >50 >50 >50

15 COOCH3 2,3-dichlorobenzyl 4.1 >50 >50 >50 >50 >50

16 COOCH3 2,4-dichlorobenzyl >50 >50 >50 >50 >50 >50

17 COOCH3 2,6-dichlorobenzyl >50 >50 >50 >50 >50 >50

18 COOCH3 3,4-dichlorobenzyl 8.2 >50 >50 50 >50 >50

19 COOCH3 2-flurobenzyl >50 >50 >50 >50 >50 >50

20 COOCH3 4-flurobenzyl >50 >50 >50 >50 >50 >50

21 COOCH3 2,4-diflurobenzyl >50 >50 >50 >50 >50 >50

22 COOCH3 2,5-diflurobenzyl 25 >50 >50 >50 >50 75

23 COOCH3 2,6-diflurobenzyl >50 >50 >50 >50 >50 >50

24 COOCH3 3,4-diflurobenzyl 50 >50 >50 >50 >50 100

25 COOCH3 3,5-diflurobenzyl >50 >50 >50 >50 >50 >50

26 COOCH3 >50 >50 >50 >50 >50 >50
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Compd R3 R9
IC50 (μM)

a

HL-60
b

COLO205
b

Hep3B
b

H460
b

A498
b

Detroit551
b

27 COOCH3 >50 >50 >50 >50 >50 >50

28 COOCH3 >50 >50 >50 >50 >50 >50

29 COOCH3 >50 >50 >50 >50 >50 >50

30 COOCH3 >50 >50 >50 >50 >50 >50

31 CH2OH benzyl 25 35.56 23.5 40.6 >50 80.4

32 CH2OH 2-methoxybenzyl 5.6 7.9 10.3 18.1 16.4 90.4

33 CH2OH 3-methoxybenzyl 8.8 9.35 50 46.7 45.2 >50

34 CH2OH 4-methoxybenzyl 8.1 22.6 >50 >50 38.9 >50

35 CH2OH 3,5-dimethoxybenzyl 0.4 3.8 2.5 2.5 45.6 >50

36 CH2OH 3,4,5-trimethoxybenzyl 0.6 3.17 4.1 3.7 29.4 100

37 CH2OH 2-chlorobenzyl 3.8 >50 6.2 6.4 24.3 25

38 CH2OH 3-chlorobenzyl 8.8 27.0 16.9 43.9 43.4 100

39 CH2OH 4-chlorobenzyl 50 >50 50 >50 >50 >50

40 CH2OH 2,3-dichlorobenzyl 3.0 6.2 5.3 5.3 17.5 27.9

41 CH2OH 2,4-dichlorobenzyl 32.0 31.5 30.8 41.5 >50 75

42 CH2OH 2,6-dichlorobenzyl >50 >50 50 45.8 >50 100

43 CH2OH 3,4-dichlorobenzyl 8.7 28.8 30.1 27.3 40.8 >50

44 CH2OH 2-flurobenzyl 13.9 30.7 10.6 21.8 49.3 75.2

45 CH2OH 4-flurobenzyl 43.3 >50 >50 >50 >50 >50

46 CH2OH 2,4-diflurobenzyl 34.9 48.0 >50 >50 >50 >50

47 CH2OH 2,5-diflurobenzyl 9.5 28.8 20.3 18.3 38.2 63.6
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Compd R3 R9
IC50 (μM)

a

HL-60
b

COLO205
b

Hep3B
b

H460
b

A498
b

Detroit551
b

48 CH2OH 2,6-diflurobenzyl 50 >50 >50 >50 >50 75

49 CH2OH 3,4-diflurobenzyl 29.9 38.2 >50 >50 >50 92.2

50 CH2OH 3,5-diflurobenzyl 5.0 28.9 10.7 13.5 26.1 50

51 CH2OH 42.2 >50 >50 >50 >50 100

52 CH2OH >50 >50 >50 >50 >50 >50

53 CH2OH >50 >50 >50 >50 >50 >50

54 CH2OH >50 >50 >50 >50 >50 >50

55 CH2OH >50 >50 50 >50 >50 >50

56 COOH benzyl >100 >50 >100 >100 >50 >100

57 COOH 3,5-dimethoxybenzyl 22.4 >50 41.9 >50 46.4 >100

58 COOH 3,4,5-trimethoxybenzyl >50 – – – – >50

YC-1 25.3 – – – 0.3 –

a
Human tumor cells were treated with different concentrations of samples for 48h. Data are presented as IC50 (μM, the concentration of 50% 

proliferation-inhibitory effect).

b
Cell lines include leukemia (HL-60), liver carcinoma (Hep3B), lung carcinoma (H460), colon carcinoma (COLO205), and normal skin fibroblast 

(Detroit 551).
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Table 2

Growth percentages of compound 11 in the NCI-60 human cancer cell lines (Drug Screen Program).

Panel/Cell line
Compounds / Growth percentage (%)

a

11

Leukemia

CCRF-CEM 7.66

HL-60(TB) 5.33

K-562 12.71

MOLT-4 29.58

RPMI-8226 26.36

SR 14.90

Non-small cell lung cancer

EKVX 63.03

HOP-62 24.83

HOP-92 115.40

NCI-H226 40.21

NCI-H23 38.91

NCI-H322M 57.89

NCI-H460 11.04

NCI-H522 4.70

Colon cancer

COLO 205 −52.54 
b

HCC-2998 25.42

HCT-116 14.49

HCT-15 23.53

HT-29 2.30

KM12 22.08

SW-620 30.37

CNS cancer

SF-268 46.66

SF-295 17.25

SF-539 7.79

SNB-19 40.52

SNB-75 27.72

Melanoma

LOX IMVI 35.29

MALME-3M 67.63

M14 21.53

MDA-MB-435 −38.70 
b

SK-MEL-2 5.57

SK-MEL-28 37.89
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Panel/Cell line
Compounds / Growth percentage (%)

a

11

SK-MEL-5 2.75

UACC-62 27.34

Ovarian cancer

IGROV1 46.03

OVCAR-3 −17.97 
b

OVCAR-4 50.03

OVCAR-5 55.90

NCI/ADR-RES 18.14

SK-OV-3 9.78

Renal cancer

786-0 26.47

A498 30.25

ACHN 45.63

CAKI-1 45.45

RXF 393 −15.58 
b

SN12C 37.23

TK-10 63.05

UO-31 46.03

Prostate cancer

PC-3 34.13

DU-145 23.71

Breast cancer

MCF7 8.38

MDA-MB-231/ATCC 27.05

HS 578T 37.35

BT-549 34.91

T-47D 55.79

MDA-MB-468 −24.11 
b

Mean growth 25.98

Range of growth −52.54 to 115.40

The most sensitive cell line COLO 205 (−52.54)

Positive cytostatic effect
c 43/56

Positive cytotoxic effect
d 5/56

a
Data obtained from NCI in vitro 60-cell screen program at 10 μM.

b
Negative values represent compound proved lethal to the cancer cell line (cell death).

c
Ratio between number of cell lines with percent growth from 0 to 50 and total number of cell lines.

d
Ratio between number of cell lines with percent growth of < 0 and total number of cell lines.
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