Design and synthesis of 6,7-methylenedioxy-4-substituted phenylquinolin-2(1H)-one derivatives as novel anticancer agents that induce apoptosis with cell cycle arrest at G2/M phase

Abstract

Novel 6,7-methylenedioxy-4-substituted phenylquinolin-2-one derivatives 12a–n were designed and prepared through an intramolecular cyclization reaction and evaluated for in vitro anticancer activity. Among the synthesized compounds, 6,7-methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin-2(1H)-one (12e) displayed potent cytotoxicity against several different tumor cell lines at a sub-micromolar level. Furthermore, results of fluorescence-activated cell sorting (FACS) analysis suggested that 12e induced cell cycle arrest in the G2/M phase accompanied by apoptosis in HL-60 and H460 cells. This action was confirmed by Hoechst staining and caspase-3 activation. Due to their easy synthesis and remarkable biological activities, 4-phenylquinolin-2(1H)-one analogs (4-PQs) are promising new anticancer leads based on the quinoline scaffold. Accordingly, compound 12e was identified as a new lead compound that merits further optimization and development as an anticancer candidate

    Similar works