217 research outputs found
Doping dependence of the resonance peak and incommensuration in high- superconductors
The doping and frequency evolutions of the incommensurate spin response and
the resonance mode are studied based on the scenario of the Fermi surface
topology. We use the slave-boson mean-field approach to the
model and including the antiferromagnetic fluctuation correction in the
random-phase approximation. We find that the equality between the
incommensurability and the hole concentration is reproduced at low frequencies
in the underdoped regime. This equality observed in experiments was explained
{\it only} based on the stripe model before. We also obtain the downward
dispersion for the spin response and predict its doping dependence for further
experimental testing, as well as a proportionality between the low-energy
incommensurability and the resonance energy. Our results suggest a common
origin for the incommensuration and the resonance peak based on the Fermi
surface topology and the d-wave symmetry.Comment: 5 pages, 4 PS figure
A Fast Radio Burst in a Compact Galaxy Group at z ∼ 1
FRB 20220610A is a high-redshift fast radio burst (FRB) that has not been observed to repeat. Here, we present rest-frame UV and optical Hubble Space Telescope observations of the field of FRB 20220610A. The imaging reveals seven extended sources, one of which we identify as the most likely host galaxy with a spectroscopic redshift of z = 1.017. We spectroscopically confirm three additional sources to be at the same redshift and identify the system as a compact galaxy group with possible signs of interaction among group members. We determine the host of FRB 20220610A to be a star-forming galaxy with a stellar mass of ≈109.7 M ⊙, mass-weighted age of ≈2.6 Gyr, and star formation rate (integrated over the last 100 Myr) of ≈1.7 M ⊙ yr−1. These host properties are commensurate with the star-forming field galaxy population at z ∼ 1 and trace their properties analogously to the population of low-z FRB hosts. Based on estimates of the total stellar mass of the galaxy group, we calculate a fiducial contribution to the observed dispersion measure from the intragroup medium of ≈90-182 pc cm−3 (rest frame). This leaves a significant excess of 515 − 272 + 122 pc cm−3 (in the observer frame); further observation will be required to determine the origin of this excess. Given the low occurrence rates of galaxies in compact groups, the discovery of an FRB in one demonstrates a rare, novel environment in which FRBs can occur. As such groups may represent ongoing or future mergers that can trigger star formation, this supports a young stellar progenitor relative to star formation
The Demographics, Stellar Populations, and Star Formation Histories of Fast Radio Burst Host Galaxies: Implications for the Progenitors
We present a comprehensive catalog of observations and stellar population properties for 23 highly secure host galaxies of fast radio bursts (FRBs). Our sample comprises 6 repeating FRBs and 17 apparent nonrepeaters. We present 82 new photometric and 8 new spectroscopic observations of these hosts. Using stellar population synthesis modeling and employing nonparametric star formation histories (SFHs), we find that FRB hosts have a median stellar mass of ≈109.9M⊙, mass-weighted age ≈5.1 Gyr, and ongoing star formation rate ≈1.3 M⊙ yr−1 but span wide ranges in all properties. Classifying the hosts by degree of star formation, we find that 87% (20 of 23 hosts) are star-forming, two are transitioning, and one is quiescent. The majority trace the star-forming main sequence of galaxies, but at least three FRBs in our sample originate in less-active environments (two nonrepeaters and one repeater). Across all modeled properties, we find no statistically significant distinction between the hosts of repeaters and nonrepeaters. However, the hosts of repeating FRBs generally extend to lower stellar masses, and the hosts of nonrepeaters arise in more optically luminous galaxies. While four of the galaxies with the clearest and most prolonged rises in their SFHs all host repeating FRBs, demonstrating heightened star formation activity in the last ≲100 Myr, one nonrepeating host shows this SFH as well. Our results support progenitor models with short delay channels (i.e., magnetars formed via core-collapse supernova) for most FRBs, but the presence of some FRBs in less-active environments suggests a fraction form through more delayed channels
Competing orders in a magnetic field: spin and charge order in the cuprate superconductors
We describe two-dimensional quantum spin fluctuations in a superconducting
Abrikosov flux lattice induced by a magnetic field applied to a doped Mott
insulator. Complete numerical solutions of a self-consistent large N theory
provide detailed information on the phase diagram and on the spatial structure
of the dynamic spin spectrum. Our results apply to phases with and without
long-range spin density wave order and to the magnetic quantum critical point
separating these phases. We discuss the relationship of our results to a number
of recent neutron scattering measurements on the cuprate superconductors in the
presence of an applied field. We compute the pinning of static charge order by
the vortex cores in the `spin gap' phase where the spin order remains
dynamically fluctuating, and argue that these results apply to recent scanning
tunnelling microscopy (STM) measurements. We show that with a single typical
set of values for the coupling constants, our model describes the field
dependence of the elastic neutron scattering intensities, the absence of
satellite Bragg peaks associated with the vortex lattice in existing neutron
scattering observations, and the spatial extent of charge order in STM
observations. We mention implications of our theory for NMR experiments. We
also present a theoretical discussion of more exotic states that can be built
out of the spin and charge order parameters, including spin nematics and phases
with `exciton fractionalization'.Comment: 36 pages, 33 figures; for a popular introduction, see
http://onsager.physics.yale.edu/superflow.html; (v2) Added reference to new
work of Chen and Ting; (v3) reorganized presentation for improved clarity,
and added new appendix on microscopic origin; (v4) final published version
with minor change
Spin dynamics of stripes
The spin dynamics of stripes in high-temperature superconductors and related
compounds is studied in the framework of a spin-wave theory for a simple
spin-only model. The magnon dispersion relation and the magnetic structure
factor are calculated for diagonal and vertical stripes. Acoustical as well as
optical bands are included in the analysis. The incommensurability and the
resonance appear as complementary features of the band structure at
different energy scales. The dependence of spin-wave velocities and resonance
frequencies on the stripe spacing and coupling is calculated. At low doping,
the resonance frequency is found to scale roughly inversely proportional to the
stripe spacing. The favorable comparison of the results with experimental data
suggests that the spin-only model provides a suitable and simple basis for
calculating and understanding the spin dynamics of stripes.Comment: 11 page, 10 figures, pdf version with high-res.pics at
http://www.thp.uni-koeln.de/~sts
The emergence of a new source of X-rays from the binary neutron star merger GW170817
The binary neutron-star (BNS) merger GW170817 is the first celestial object
from which both gravitational waves (GWs) and light have been detected enabling
critical insight on the pre-merger (GWs) and post-merger (light) physical
properties of these phenomena. For the first years after the merger
the detected radio and X-ray radiation has been dominated by emission from a
structured relativistic jet initially pointing degrees away from
our line of sight and propagating into a low-density medium. Here we report on
observational evidence for the emergence of a new X-ray emission component at
days after the merger. The new component has luminosity at 1234 days, and represents a - excess compared to the expectations from the off-axis
jet model that best fits the multi-wavelength afterglow of GW170817 at earlier
times. A lack of detectable radio emission at 3 GHz around the same time
suggests a harder broadband spectrum than the jet afterglow. These properties
are consistent with synchrotron emission from a mildly relativistic shock
generated by the expanding merger ejecta, i.e. a kilonova afterglow. In this
context our simulations show that the X-ray excess supports the presence of a
high-velocity tail in the merger ejecta, and argues against the prompt collapse
of the merger remnant into a black hole. However, radiation from accretion
processes on the compact-object remnant represents a viable alternative to the
kilonova afterglow. Neither a kilonova afterglow nor accretion-powered emission
have been observed before.Comment: 66 pages, 12 figures, Submitte
An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics
For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types
A mission control architecture for robotic lunar sample return as field tested in an analogue deployment to the Sudbury impact structure
A Mission Control Architecture is presented for a Robotic Lunar Sample Return Mission which builds upon the experience of the landed missions of the NASA Mars Exploration Program. This architecture consists of four separate processes working in parallel at Mission Control and achieving buy-in for plans sequentially instead of simultaneously from all members of the team. These four processes were: Science Processing, Science Interpretation, Planning and Mission Evaluation. Science Processing was responsible for creating products from data downlinked from the field and is organized by instrument. Science Interpretation was responsible for determining whether or not science goals are being met and what measurements need to be taken to satisfy these goals. The Planning process, responsible for scheduling and sequencing observations, and the Evaluation process that fostered inter-process communications, reporting and documentation assisted these processes. This organization is advantageous for its flexibility as shown by the ability of the structure to produce plans for the rover every two hours, for the rapidity with which Mission Control team members may be trained and for the relatively small size of each individual team. This architecture was tested in an analogue mission to the Sudbury impact structure from June 6-17, 2011. A rover was used which was capable of developing a network of locations that could be revisited using a teach and repeat method. This allowed the science team to process several different outcrops in parallel, downselecting at each stage to ensure that the samples selected for caching were the most representative of the site. Over the course of 10 days, 18 rock samples were collected from 5 different outcrops, 182 individual field activities - such as roving or acquiring an image mosaic or other data product - were completed within 43 command cycles, and the rover travelled over 2,200 m. Data transfer from communications passes were filled to 74%. Sample triage was simulated to allow down-selection to 1kg of material for return to Earth
Driver Fusions and Their Implications in the Development and Treatment of Human Cancers.
Gene fusions represent an important class of somatic alterations in cancer. We systematically investigated fusions in 9,624 tumors across 33 cancer types using multiple fusion calling tools. We identified a total of 25,664 fusions, with a 63% validation rate. Integration of gene expression, copy number, and fusion annotation data revealed that fusions involving oncogenes tend to exhibit increased expression, whereas fusions involving tumor suppressors have the opposite effect. For fusions involving kinases, we found 1,275 with an intact kinase domain, the proportion of which varied significantly across cancer types. Our study suggests that fusions drive the development of 16.5% of cancer cases and function as the sole driver in more than 1% of them. Finally, we identified druggable fusions involving genes such as TMPRSS2, RET, FGFR3, ALK, and ESR1 in 6.0% of cases, and we predicted immunogenic peptides, suggesting that fusions may provide leads for targeted drug and immune therapy
Erratum: "A Gravitational-wave Measurement of the Hubble Constant Following the Second Observing Run of Advanced LIGO and Virgo" (2021, ApJ, 909, 218)
[no abstract available
- …