16 research outputs found

    Mapping the Linearly Polarized Spectral Line Emission around the Evolved Star IRC+10216

    Full text link
    We present spectro-polarimetric observations of several molecular lines obtained with the Submillimeter Array (SMA) toward the carbon rich AGB star IRC+10216. We have detected and mapped the linear polarization of the CO 3-2, SiS 19-18 and CS 7-6 lines. The polarization arises at a distance of ~450 AU from the star and is blueshifted with respect the Stokes I. The SiS 19-18 polarization pattern appears to be consistent with a locally radial magnetic field configuration. However, the CO 3-2 and CS 7-6 line polarization suggests an overall complex magnetic field morphology within the envelope. This work demonstrates the feasibility of using spectro-polarimetric observations to carry out tomographic imaging of the magnetic field in circumstellar envelopes.Comment: Accepted for publication in The Astrophysical Journal Letters. 10 pages, 3 figure

    High-J v=0 SiS Maser Emission in IRC+10216: A New Case of Infrared Overlaps

    Get PDF
    We report on the first detection of maser emission in the J=11-10, J=14-13 and J=15-14 transitions of the v=0 vibrational state of SiS toward the C-rich star IRC+10216. These masers seem to be produced in the very inhomogeneous region between the star and the inner dust formation zone, placed at 5-7 R*, with expansion velocities below 10 km/s. We interpret the pumping mechanism as due to overlaps between v=1-0 ro-vibrational lines of SiS and mid-IR lines of C2H2, HCN and their 13C isotopologues. The large number of overlaps found suggests the existence of strong masers for high-J v=0 and v=1 SiS transitions, located in the submillimeter range. In addition, it could be possible to find several rotational lines of the SiS isotopologues displaying maser emission.Comment: 4 pages, 1 figure, published in the ApJ Letter

    Understanding the chemical complexity in Circumstellar Envelopes of C-Rich AGB stars: The case of IRC +10216

    Get PDF
    Abstract The circumstellar envelopes of carbon-rich AGB stars show a chemical complexity that is exemplified by the prototypical object IRC +10216, in which about 60 different molecules have been detected to date. Most of these species are carbon chains of the type C n H, C n H 2 , C n N, HC n N. We present the detection of new species (CH 2 CHCN, CH 2 CN, H 2 CS, CH 3 CCH and C 3 O) achieved thanks to the systematic observation of the full 3 mm window with the IRAM 30m telescope plus some ARO 12m observations. All these species, known to exist in the interstellar medium, are detected for the first time in a circumstellar envelope around an AGB star. These five molecules are most likely formed in the outer expanding envelope rather than in the stellar photosphere. A pure gas phase chemical model of the circumstellar envelope is reasonably successful in explaining the derived abundances, and additionally allows to elucidate the chemical formation routes and to predict the spatial distribution of the detected species

    The abundance of SiS in circumstellar envelopes around AGB stars

    Full text link
    New SiS multi-transition (sub-)millimetre line observations of a sample of AGB stars with varying photospheric C/O-ratios and mass-loss rates are presented. A combination of low- and high-energy lines are important in constraining the circumstellar distribution of SiS molecules. A detailed radiative transfer modelling of the observed SiS line emission is performed, including the effect of thermal dust grains in the excitation analysis. We find that the circumstellar fractional abundance of SiS in these environments has a strong dependence on the photospheric C/O-ratio as expected from chemical models. The carbon stars (C/O>1) have a mean fractional abundance of 3.1E-6, about an order of magnitude higher than found for the M-type AGB stars (C/O<1) where the mean value is 2.7E-7. These numbers are in reasonable agreement with photospheric LTE chemical models. SiS appears to behave similar to SiO in terms of photodissociation in the outer part of the circumstellar envelope. In contrast to previous results for the related molecule SiO, there is no strong correlation of the fractional abundance with density in the CSE, as would be the case if freeze-out onto dust grains were important. However, possible time-variability of the line emission in the lower J transitions and the sensitivity of the line emission to abundance gradients in the inner part of the CSE may mask a correlation with the density of the wind. There are indications that the SiS fractional abundance could be significantly higher closer to the star which, at least in the case of M-type AGB stars, would require non-equilibrium chemical processes.Comment: Accepted for publication in A&A (14 pages, 7 figures

    Submillimeter narrow emission lines from the inner envelope of IRC+10216

    Full text link
    A spectral-line survey of IRC+10216 in the 345 GHz band has been undertaken with the Submillimeter Array. Although not yet completed, it has already yielded a fairly large sample of narrow molecular emission lines with line-widths indicating expansion velocities of ~4 km/s, less than 3 times the well-known value of the terminal expansion velocity (14.5 km/s) of the outer envelope. Five of these narrow lines have now been identified as rotational transitions in vibrationally excited states of previously detected molecules: the v=1, J=17--16 and J=19--18 lines of Si34S and 29SiS and the v=2, J=7--6 line of CS. Maps of these lines show that the emission is confined to a region within ~60 AU of the star, indicating that the narrow-line emission is probing the region of dust-formation where the stellar wind is still being accelerated.Comment: 5 pages, 5 figures, Accepted for publication in Ap

    Understanding the Chemical Complexity in Circumstellar Envelopes of C-rich AGB Stars: the Case of IRC +10216

    Get PDF
    The circumstellar envelopes of carbon-rich AGB stars show a chemical complexity that is exemplified by the prototypical object IRC +10216, in which about 60 different molecules have been detected to date. Most of these species are carbon chains of the type CnH, CnH2, CnN, HCnN. We present the detection of new species (CH2CHCN, CH2CN, H2CS, CH3CCH and C3O) achieved thanks to the systematic observation of the full 3 mm window with the IRAM 30m telescope plus some ARO 12m observations. All these species, known to exist in the interstellar medium, are detected for the first time in a circumstellar envelope around an AGB star. These five molecules are most likely formed in the outer expanding envelope rather than in the stellar photosphere. A pure gas phase chemical model of the circumstellar envelope is reasonably successful in explaining the derived abundances, and additionally allows to elucidate the chemical formation routes and to predict the spatial distribution of the detected species.Comment: 4 pages, 4 figures; to appear in Astrophysics and Space Science, special issue of "Science with ALMA: a new era for Astrophysics" conference, November, 13-17 2006, ed. R. Bachille

    AstrofĂ­sica molecular: caracterizaciĂłn de envolturas circunestelares y procesos colisionales en el laboratorio

    Get PDF
    Esta investigación estå basada en la utilización de la ecuación maestra para el estudio de un gas de N2 natural en expansión con el fin de imponer restricciones experimentales a un conjunto de tasas de transferencia calculadas numéricamente. La información sobre el gas obtenida gracias a la técnica no intrusiva de la espectroscopía Raman lineal ha permitido determinar las condiciones físicas (densidad absoluta y temperatura rotacional) del N2 en una serie de puntos del eje de 4 expansiones supersónicas generadas a presiones distintas. Utilizando estas dos magnitudes se han calculado la temperatura traslacional del gas, su velocidad de expansión y la derivada temporal de las poblaciones del N2 a lo largo del eje de la expansión con precisiones lo suficientemente buenas como para imponer las restricciones a las tasas de transferencia
    corecore