41 research outputs found

    Fingerprints of giant planets in the photospheres of Herbig stars

    Get PDF
    Around 2% of all A stars have photospheres depleted in refractory elements. This is hypothesized to arise from a preferential accretion of gas rather than dust, but the specific processes and the origin of the material -- circum- or interstellar -- are not known. The same depletion is seen in 30% of young, disk-hosting Herbig Ae/Be stars. We investigate whether the chemical peculiarity originates in a circumstellar disk. Using a sample of systems for which both the stellar abundances and the protoplanetary disk structure are known, we find that stars hosting warm, flaring group I disks typically have Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of stars hosting cold, flat group II disks. The volatile, C and O, abundances in both sets are identical. Group I disks are generally transitional, having radial cavities depleted in millimetre-sized dust grains, while those of group II are usually not. Thus we propose that the depletion of heavy elements emerges as Jupiter-like planets block the accretion of part of the dust, while gas continues to flow towards the central star. We calculate gas to dust ratios for the accreted material and find values consistent with models of disk clearing by planets. Our results suggest that giant planets of ~0.1 to 10 M_Jup are hiding in at least 30% of Herbig Ae/Be disks.Comment: 5 pages, 3 figures, accepted for publication in A&A Letter

    From solar to stellar corona: the role of wind, rotation and magnetism

    Get PDF
    Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for characterizing the generation of magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parametrized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large scale magnetic field is not trivial. An alternative -broadly used in solar physics- is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5Rsun. However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down time scales made using our technique, and compare them to observational requirements.Comment: Accepted for publication in the Astrophysical Journa

    KELT-9 and its ultra-hot Jupiter: stellar parameters, composition, and planetary pollution

    Get PDF
    KELT-9b is an ultra-hot Jupiter observed to be undergoing extreme mass loss. Its A0-type host star has a radiative envelope, which makes its surface layers prone to retaining recently accreted material. To search for potential signs of planetary material polluting the stellar surface, we carry out the most comprehensive chemical characterisation of KELT-9 to-date. New element detections include Na and Y, which had previously been detected in the ultra-hot Jupiter but not studied in the star; these detections complete the set of nine elements measured in both star and planet. In comparing KELT-9 with similar open cluster stars we find no strong anomalies. This finding is consistent with calculations of photospheric pollution accounting for stellar mixing and using observationally estimated KELT-9b mass loss rates. We also rule out recent, short-lived intensive mass transfer such as the stellar ingestion of an Earth-mass exomoon.Comment: 7 pages, 7 figures, accepted for publication in MNRA

    First results of a magnetic survey of classical Cepheids

    Full text link
    We report recent ESPaDOnS and HARPSpol spectropolarimetric observations from our ongoing magnetic survey of the brightest twenty-five classical Cepheids. Stokes VV magnetic signatures are detected in eight of fifteen targets observed to date. The Stokes VV profiles show a diversity of morphologies with weak associated longitudinal field measurements of order 1 G. Many of the Stokes VV profiles are difficult to interpret in the context of the normal Zeeman effect. They consist of approximately unipolar single or double lobe(s) of positive or negative circular polarization. We hypothesize that these unusual signatures are due to the Zeeman effect modified by atmospheric velocity or magnetic field gradients. In contrast, the Stokes VV profiles of Polaris and MY Pup appear qualitatively similar to the complex magnetic signatures of non-pulsating cool supergiants, possibly due to the low pulsation amplitudes of these two stars.Comment: 2 pages, 1 figure, to appear in Proceedings of the IAU, Symposium No. 361: Massive Stars Near and Far, 2022, N. St-Louis, J. S. Vink and J. Mackey, ed

    Magnetic field and wind of Kappa Ceti: towards the planetary habitability of the young Sun when life arose on Earth

    Full text link
    We report magnetic field measurements for Kappa1~Cet, a proxy of the young Sun when life arose on Earth. We carry out an analysis of the magnetic properties determined from spectropolarimetric observations and reconstruct its large-scale surface magnetic field to derive the magnetic environment, stellar winds and particle flux permeating the interplanetary medium around Kappa1~Cet. Our results show a closer magnetosphere and mass-loss rate of Mdot = 9.7 x 10^{-13} Msol/yr, i.e., a factor 50 times larger than the current solar wind mass-loss rate, resulting in a larger interaction via space weather disturbances between the stellar wind and a hypothetical young-Earth analogue, potentially affecting the planet's habitability. Interaction of the wind from the young Sun with the planetary ancient magnetic field may have affected the young Earth and its life conditionsComment: 6 pages, 5 figures, Published at the Astrophysical Journal Letters (ApJL): Manuscript #LET3358

    The winds of young Solar-type stars in the Pleiades, AB Doradus, Columba and β\beta Pictoris

    Full text link
    Solar-type stars, which shed angular momentum via magnetised stellar winds, enter the main sequence with a wide range of rotational periods ProtP_\text{rot}. This initially wide range of rotational periods contracts and has mostly vanished by a stellar age t0.6t\sim0.6 Gyr, after which Solar-type stars spin according to the Skumanich relation ProttP_\text{rot}\propto\sqrt t. Magnetohydrodynamic stellar wind models can improve our understanding of this convergence of rotation periods. We present wind models of fifteen young Solar-type stars aged from 24 Myr to 0.13 Gyr. With our previous wind models of stars aged 0.26 Gyr and 0.6 Gyr we obtain thirty consistent three-dimensional wind models of stars mapped with Zeeman-Doppler imaging - the largest such set to date. The models provide good cover of the pre-Skumanich phase of stellar spin-down in terms of rotation, magnetic field, and age. We find that the mass loss rate M˙Φ0.9±0.1\dot M\propto\Phi^{0.9\pm0.1} with a residual spread of 150% and that the wind angular momentum loss rate J˙Prot1Φ1.3±0.2\dot J\propto{}P_\text{rot}^{-1} \Phi^{1.3\pm0.2} with a residual spread of 500% where Φ\Phi is the unsigned surface magnetic flux. When comparing different magnetic field scalings for each single star we find a gradual reduction in the power-law exponent with increasing magnetic field strength.Comment: 19 pages, 7 figure

    Estimating magnetic filling factors from Zeeman–Doppler magnetograms

    Get PDF
    V.S., S.P.M., and A.J.F.acknowledge funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 682393 AWESoMeStars). S.B.S. acknowledges funding via the Austrian Space Application Programme (ASAP) of the Austrian Research Promotion Agency (FFG) within ASAP11, the FWF NFN project S11601-N16 and the sub-project S11604-N16. A. A.V. acknowledges funding received from the Irish Research Council Laureate Awards 2017/2018.Low-mass stars are known to have magnetic fields that are believed to be of dynamo origin. Two complementary techniques are principally used to characterize them. Zeeman–Doppler imaging (ZDI) can determine the geometry of the large-scale magnetic field while Zeeman broadening can assess the total unsigned flux including that associated with small-scale structures such as spots. In this work, we study a sample of stars that have been previously mapped with ZDI. We show that the average unsigned magnetic flux follows an activity-rotation relation separating into saturated and unsaturated regimes. We also compare the average photospheric magnetic flux recovered by ZDI, BV, with that recovered by Zeeman broadening studies, BI. In line with previous studies, BV ranges from a few % to ~20% of BI. We show that a power-law relationship between BV and BI exists and that ZDI recovers a larger fraction of the magnetic flux in more active stars. Using this relation, we improve on previous attempts to estimate filling factors, i.e., the fraction of the stellar surface covered with magnetic field, for stars mapped only with ZDI. Our estimated filling factors follow the well-known activity-rotation relation, which is in agreement with filling factors obtained directly from Zeeman broadening studies. We discuss the possible implications of these results for flux tube expansion above the stellar surface and stellar wind models.Publisher PDFPeer reviewe

    Genome-Wide Association Study of Coronary Heart Disease and Its Risk Factors in 8,090 African Americans: The NHLBI CARe Project

    Get PDF
    Coronary heart disease (CHD) is the leading cause of mortality in African Americans. To identify common genetic polymorphisms associated with CHD and its risk factors (LDL- and HDL-cholesterol (LDL-C and HDL-C), hypertension, smoking, and type-2 diabetes) in individuals of African ancestry, we performed a genome-wide association study (GWAS) in 8,090 African Americans from five population-based cohorts. We replicated 17 loci previously associated with CHD or its risk factors in Caucasians. For five of these regions (CHD: CDKN2A/CDKN2B; HDL-C: FADS1-3, PLTP, LPL, and ABCA1), we could leverage the distinct linkage disequilibrium (LD) patterns in African Americans to identify DNA polymorphisms more strongly associated with the phenotypes than the previously reported index SNPs found in Caucasian populations. We also developed a new approach for association testing in admixed populations that uses allelic and local ancestry variation. Using this method, we discovered several loci that would have been missed using the basic allelic and global ancestry information only. Our conclusions suggest that no major loci uniquely explain the high prevalence of CHD in African Americans. Our project has developed resources and methods that address both admixture- and SNP-association to maximize power for genetic discovery in even larger African-American consortia
    corecore