Around 2% of all A stars have photospheres depleted in refractory elements.
This is hypothesized to arise from a preferential accretion of gas rather than
dust, but the specific processes and the origin of the material -- circum- or
interstellar -- are not known. The same depletion is seen in 30% of young,
disk-hosting Herbig Ae/Be stars. We investigate whether the chemical
peculiarity originates in a circumstellar disk. Using a sample of systems for
which both the stellar abundances and the protoplanetary disk structure are
known, we find that stars hosting warm, flaring group I disks typically have
Fe, Mg and Si depletions of 0.5 dex compared to the solar-like abundances of
stars hosting cold, flat group II disks. The volatile, C and O, abundances in
both sets are identical. Group I disks are generally transitional, having
radial cavities depleted in millimetre-sized dust grains, while those of group
II are usually not. Thus we propose that the depletion of heavy elements
emerges as Jupiter-like planets block the accretion of part of the dust, while
gas continues to flow towards the central star. We calculate gas to dust ratios
for the accreted material and find values consistent with models of disk
clearing by planets. Our results suggest that giant planets of ~0.1 to 10 M_Jup
are hiding in at least 30% of Herbig Ae/Be disks.Comment: 5 pages, 3 figures, accepted for publication in A&A Letter