47 research outputs found

    Direct Communication to Earth from Probes

    Get PDF
    A viewgraph presentation on outer planetary probe communications to Earth is shown. The topics include: 1) Science Rational for Atmospheric Probes to the Outer Planets; 2) Controlling the Scientific Appetite; 3) Learning more about Jupiter before we send more probes; 4) Sample Microwave Scan From Juno; 5) Jupiter s Deep Interior; 6) The Square Kilometer Array (SKA): A Breakthrough for Radio Astronomy; 7) Deep Space Array-based Network (DSAN); 8) Probe Direct-to-Earth Data Rate Calculations; 9) Summary; and 10) Enabling Ideas

    Precession of Mercury’s Perihelion from Ranging to the MESSENGER Spacecraft

    Get PDF
    The perihelion of Mercury's orbit precesses due to perturbations from other solar system bodies, solar quadrupole moment (J [subscript 2]), and relativistic gravitational effects that are proportional to linear combinations of the parametrized post-Newtonian parameters β and γ. The orbits and masses of the solar system bodies are quite well known, and thus the uncertainty in recovering the precession rate of Mercury's perihelion is dominated by the uncertainties in the parameters J [subscript 2], β, and γ. Separating the effects due to these parameters is challenging since the secular precession rate has a linear dependence on each parameter. Here we use an analysis of radiometric range measurements to the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft in orbit about Mercury to estimate the precession of Mercury's perihelion. We show that the MESSENGER ranging data allow us to measure not only the secular precession rate of Mercury's perihelion with substantially improved accuracy, but also the periodic perturbation in the argument of perihelion sensitive to β and γ. When combined with the γ estimate from a Shapiro delay experiment from the Cassini mission, we can decouple the effects due to β and J [subscript 2] and estimate both parameters, yielding (β -1)=(-2.7 ± 3.9) x 10[superscript -5] and J [subscript 2] = (2.25 ± 0.09) × 10[superscript −7]. We also estimate the total precession rate of Mercury's perihelion as 575.3100 ± 0.0015''/century and provide estimated contributions and uncertainties due to various perturbing effects

    Corner-Cube Retroreflector Instrument for Advanced Lunar Laser Ranging

    Get PDF
    A paper describes how, based on a structural-thermal-optical-performance analysis, it has been determined that a single, large, hollow corner cube (170- mm outer diameter) with custom dihedral angles offers a return signal comparable to the Apollo 11 and 14 solid-corner-cube arrays (each consisting of 100 small, solid corner cubes), with negligible pulse spread and much lower mass. The design of the corner cube, and its surrounding mounting and casing, is driven by the thermal environment on the lunar surface, which is subject to significant temperature variations (in the range between 70 and 390 K). Therefore, the corner cube is enclosed in an insulated container open at one end; a narrow-bandpass solar filter is used to reduce the solar energy that enters the open end during the lunar day, achieving a nearly uniform temperature inside the container. Also, the materials and adhesive techniques that will be used for this corner-cube reflector must have appropriate thermal and mechanical characteristics (e.g., silica or beryllium for the cube and aluminum for the casing) to further reduce the impact of the thermal environment on the instrument's performance. The instrument would consist of a single, open corner cube protected by a separate solar filter, and mounted in a cylindrical or spherical case. A major goal in the design of a new lunar ranging system is a measurement accuracy improvement to better than 1 mm by reducing the pulse spread due to orientation. While achieving this goal, it was desired to keep the intensity of the return beam at least as bright as the Apollo 100-corner-cube arrays. These goals are met in this design by increasing the optical aperture of a single corner cube to approximately 170 mm outer diameter. This use of an "open" corner cube allows the selection of corner cube materials to be based primarily on thermal considerations, with no requirements on optical transparency. Such a corner cube also allows for easier pointing requirements, because there is no dependence on total internal reflection, which can fail off-axis

    Advancing Tests of Relativistic Gravity via Laser Ranging to Phobos

    Get PDF
    Phobos Laser Ranging (PLR) is a concept for a space mission designed to advance tests of relativistic gravity in the solar system. PLR's primary objective is to measure the curvature of space around the Sun, represented by the Eddington parameter γ\gamma, with an accuracy of two parts in 10710^7, thereby improving today's best result by two orders of magnitude. Other mission goals include measurements of the time-rate-of-change of the gravitational constant, GG and of the gravitational inverse square law at 1.5 AU distances--with up to two orders-of-magnitude improvement for each. The science parameters will be estimated using laser ranging measurements of the distance between an Earth station and an active laser transponder on Phobos capable of reaching mm-level range resolution. A transponder on Phobos sending 0.25 mJ, 10 ps pulses at 1 kHz, and receiving asynchronous 1 kHz pulses from earth via a 12 cm aperture will permit links that even at maximum range will exceed a photon per second. A total measurement precision of 50 ps demands a few hundred photons to average to 1 mm (3.3 ps) range precision. Existing satellite laser ranging (SLR) facilities--with appropriate augmentation--may be able to participate in PLR. Since Phobos' orbital period is about 8 hours, each observatory is guaranteed visibility of the Phobos instrument every Earth day. Given the current technology readiness level, PLR could be started in 2011 for launch in 2016 for 3 years of science operations. We discuss the PLR's science objectives, instrument, and mission design. We also present the details of science simulations performed to support the mission's primary objectives.Comment: 25 pages, 10 figures, 9 table

    Overview of the coordinated ground-based observations of Titan during the Huygens mission

    Get PDF
    Coordinated ground-based observations of Titan were performed around or during the Huygens atmospheric probe mission at Titan on 14 January 2005, connecting the momentary in situ observations by the probe with the synoptic coverage provided by continuing ground-based programs. These observations consisted of three different categories: (1) radio telescope tracking of the Huygens signal at 2040 MHz, (2) observations of the atmosphere and surface of Titan, and (3) attempts to observe radiation emitted during the Huygens Probe entry into Titan's atmosphere. The Probe radio signal was successfully acquired by a network of terrestrial telescopes, recovering a vertical profile of wind speed in Titan's atmosphere from 140 km altitude down to the surface. Ground-based observations brought new information on atmosphere and surface properties of the largest Satumian moon. No positive detection of phenomena associated with the Probe entry was reported. This paper reviews all these measurements and highlights the achieved results. The ground-based observations, both radio and optical, are of fundamental imnortance for the interpretatinn of results from the Huygens mission
    corecore