301 research outputs found
Pachystigmus Hellén, 1927 : a substitute name for Noserus Foerster, 1863 (Hymenoptera: Braconidae), not Noserus LeConte, 1862 (Coleoptera: Zopheridae)
By establishing the date of its first publication, Noserus Foerster, 1863 (Hymenoptera, Braconidae) is shown to be a junior primary homonym of Noserus LeConte, 1862 (Coleoptera, Zopheridae). The substitute name for Noserus Foerster is that of its subjective synonym, Pachystigmus Hellén, 1927 [type species: Pachystigmus nitidulus Hellén, 1927]. Other described species in the genus are: Pachystigmus facialis (Foerster, 1863) New Combination; P. similis (Szépligeti, 1896) New Combination, P. nitidulus Hellén, 1927, P. gigas (Tobias, 1964)New Combination, P. occipitalis (Belokobylskij, 1986) New Combination, P. olgensis (Belokobylskij, 1994) New Combination, and P. sculpturator (Belokobylskij, 1999) New Combination
Changes in Kelp and Other Seaweeds Following Elwha Dam Removal
Kelps are ecologically important seaweeds that dominated the nearshore vegetation community prior to dam removal on the Elwha River. Dam removal is expected to trigger a shift from kelps to vegetation types that are characteristic of soft-sediment communities through restoring natural sediment supply. This study is investigating how nearshore vegetation responds to restoration of the natural sediment regime, both initially when large amounts of sediment entrained in the reservoirs are released and over longer time periods. We assessed vegetation at multiple spatial scales using three approaches. First, we measured floating kelp canopy area using aerial photography. Second, we assessed the abundance of understory kelp and seagrasses with towed videography along 50 km of shoreline. Third, scuba divers recorded density of kelp species and other seaweeds along 10 km of shoreline bracketing the river mouth. Results show profound changes in vegetation and a strong gradient in magnitude of impact related to distance from the river mouth. Floating kelp canopy area decreased 74% in the Elwha Drift Cell in the first year following project initiation (year 1), with lower magnitude losses throughout the Strait of Juan de Fuca. Area of prostrate kelps decreased by 45% (400 ha) and of stipitate kelps by 30% (130 ha) in the Elwha Drift Cell in year 1. Mean kelp density near the river mouth decreased 77% in year 1 and 95% in year 2. While all 10 kelp species declined, annuals were more impacted than perennials. In contrast to the general decline, juveniles of several kelp species appeared in late August of year 2, a substantial delay compared to typical spring timing of juvenile growth. What caused the large kelp losses and apparent delay of juvenile growth? Likely candidates include light reduction from the river plume and scour, burial or settlement inhibition from deposition. These candidates will be explored using physical data from the multidisciplinary research effort
Structure and Function of the TIR Domain from the Grape NLR Protein RPV1
The N-terminal Toll/interleukin-1 receptor/resistance protein (TIR) domain has been shown to be both necessary and sufficient for defense signaling in the model plants flax and Arabidopsis. In examples from these organisms, TIR domain self-association is required for signaling function, albeit through distinct interfaces. Here, we investigate these properties in the TIR domain containing resistance protein RPV1 from the wild grapevine Muscadinia rotundifolia. The RPV1 TIR domain, without additional flanking sequence present, is autoactive when transiently expressed in tobacco, demonstrating that the TIR domain alone is capable of cell-death signaling. We determined the crystal structure of the RPV1 TIR domain at 2.3 Å resolution. In the crystals, the RPV1 TIR domain forms a dimer, mediated predominantly through residues in the αA and αE helices ("AE" interface). This interface is shared with the interface discovered in the dimeric complex of the TIR domains from the Arabidopsis RPS4/RRS1 resistance protein pair. We show that surface-exposed residues in the AE interface that mediate the dimer interaction in the crystals are highly conserved among plant TIR domain-containing proteins. While we were unable to demonstrate self-association of the RPV1 TIR domain in solution or using yeast 2-hybrid, mutations of surface-exposed residues in the AE interface prevent the cell-death autoactive phenotype. In addition, mutation of residues known to be important in the cell-death signaling function of the flax L6 TIR domain were also shown to be required for RPV1 TIR domain mediated cell-death. Our data demonstrate that multiple TIR domain surfaces control the cell-death function of the RPV1 TIR domain and we suggest that the conserved AE interface may have a general function in TIR-NLR signaling.This research was supported by the Australian Research Council (ARC) Discovery Projects DP120100685 and DP160102244. BK is a NHMRC Research Fellow (1003325 and 1110971). SW is funded by ARC DECRA (DE160100893)
Multi-epoch high-spectral-resolution observations of neutral sodium in 14 Type Ia supernovae
One of the main questions concerning Type Ia supernovae is the nature of the binary companion of the exploding white dwarf. A major discriminant between different suggested models is the presence and physical properties of circumstellar material at the time of explosion. If present, this material will be ionized by the ultraviolet radiation of the explosion and later recombine. This ionization-recombination should manifest itself as time-variable absorption features that can be detected via multi-epoch high-spectral-resolution observations. Previous studies have shown that the strongest effect is seen in the neutral sodium D lines. We report on observations of neutral sodium absorption features observed in multi-epoch high-resolution spectra of 14 Type Ia supernova events. This is the first multi-epoch high-resolution study to include multiple SNe. No variability in line strength that can be associated with circumstellar material is detected in the events presented in this paper. If we include previously published events, we find that ~18 per cent of the events in the extended sample exhibit time-variable sodium features associated with circumstellar material. We explore the implication of this study on our understanding of the progenitor systems of Type Ia supernovae via the current Type Ia supernova multi-epoch high-spectral-resolution sample
Radioactive stents delay but do not prevent in-stent neointimal hyperplasia
BACKGROUND: Restenosis after conventional stenting is almost exclusively caused by neointimal hyperplasia. Beta-particle-emitting radioactive stents decrease in-stent neointimal hyperplasia at 6-month follow-up. The purpose of this study was to evaluate the 1-year outcome of (32)P radioactive stents with an initial activity of 6 to 12 microCi using serial quantitative coronary angiography and volumetric ECG-gated 3D intravascular ultrasound (IVUS). METHODS AND RESULTS: Of 40 patients undergoing initial stent implantation, 26 were event-free after the 6-month follow-up period and 22 underwent repeat catheterization and IVUS at 1 year; they comprised half of the study population. Significant luminal deterioration was observed within the stents between 6 months and 1 year, as evidenced by a decrease in the angiographic minimum lumen diameter (-0.43+/-0.56 mm; P:=0.028) and in the mean lumen diameter in the stent (-0.55+/-0. 63 mm; P:=0.001); a significant increase in in-stent neointimal hyperplasia by IVUS (18.16+/-12.59 mm(3) at 6 months to 27.75+/-11. 99 mm(3) at 1 year; P:=0.001) was also observed. Target vessel revascularization was performed in 5 patients (23%). No patient experienced late occlusion, myocardial infarction, or death. By 1 year, 21 of the initial 40 patients (65%) remained event-free. CONCLUSIONS: Neointimal proliferation is delayed rather than prevented by radioactive stent implantation. Clinical outcome 1 year after the implantation of stents with an initial activity of 6 to 12 microCi is not favorable when compared with conventional stenting
The SXS Collaboration catalog of binary black hole simulations
Accurate models of gravitational waves from merging black holes are necessary
for detectors to observe as many events as possible while extracting the
maximum science. Near the time of merger, the gravitational waves from merging
black holes can be computed only using numerical relativity. In this paper, we
present a major update of the Simulating eXtreme Spacetimes (SXS) Collaboration
catalog of numerical simulations for merging black holes. The catalog contains
2018 distinct configurations (a factor of 11 increase compared to the 2013 SXS
catalog), including 1426 spin-precessing configurations, with mass ratios
between 1 and 10, and spin magnitudes up to 0.998. The median length of a
waveform in the catalog is 39 cycles of the dominant
gravitational-wave mode, with the shortest waveform containing 7.0 cycles and
the longest 351.3 cycles. We discuss improvements such as correcting for moving
centers of mass and extended coverage of the parameter space. We also present a
thorough analysis of numerical errors, finding typical truncation errors
corresponding to a waveform mismatch of . The simulations provide
remnant masses and spins with uncertainties of 0.03% and 0.1% (
percentile), about an order of magnitude better than analytical models for
remnant properties. The full catalog is publicly available at
https://www.black-holes.org/waveforms .Comment: 33+18 pages, 13 figures, 4 tables, 2,018 binaries. Catalog metadata
in ancillary JSON file. v2: Matches version accepted by CQG. Catalog
available at https://www.black-holes.org/waveform
Effect of a reduction in glomerular filtration rate after nephrectomy on arterial stiffness and central hemodynamics: rationale and design of the EARNEST study
Background: There is strong evidence of an association between chronic kidney disease (CKD) and cardiovascular disease. To date, however, proof that a reduction in glomerular filtration rate (GFR) is a causative factor in cardiovascular disease is lacking. Kidney donors comprise a highly screened population without risk factors such as diabetes and inflammation, which invariably confound the association between CKD and cardiovascular disease. There is strong evidence that increased arterial stiffness and left ventricular hypertrophy and fibrosis, rather than atherosclerotic disease, mediate the adverse cardiovascular effects of CKD. The expanding practice of live kidney donation provides a unique opportunity to study the cardiovascular effects of an isolated reduction in GFR in a prospective fashion. At the same time, the proposed study will address ongoing safety concerns that persist because most longitudinal outcome studies have been undertaken at single centers and compared donor cohorts with an inappropriately selected control group.<p></p>
Hypotheses: The reduction in GFR accompanying uninephrectomy causes (1) a pressure-independent increase in aortic stiffness (aortic pulse wave velocity) and (2) an increase in peripheral and central blood pressure.<p></p>
Methods: This is a prospective, multicenter, longitudinal, parallel group study of 440 living kidney donors and 440 healthy controls. All controls will be eligible for living kidney donation using current UK transplant criteria. Investigations will be performed at baseline and repeated at 12 months in the first instance. These include measurement of arterial stiffness using applanation tonometry to determine pulse wave velocity and pulse wave analysis, office blood pressure, 24-hour ambulatory blood pressure monitoring, and a series of biomarkers for cardiovascular and bone mineral disease.<p></p>
Conclusions: These data will prove valuable by characterizing the direction of causality between cardiovascular and renal disease. This should help inform whether targeting reduced GFR alongside more traditional cardiovascular risk factors is warranted. In addition, this study will contribute important safety data on living kidney donors by providing a longitudinal assessment of well-validated surrogate markers of cardiovascular disease, namely, blood pressure and arterial stiffness. If any adverse effects are detected, these may be potentially reversed with the early introduction of targeted therapy. This should ensure that kidney donors do not come to long-term harm and thereby preserve the ongoing expansion of the living donor transplant program.<p></p>
The IKKâ related kinase TBK1 activates mTORC1 directly in response to growth factors and innate immune agonists
The innate immune kinase TBK1 initiates inflammatory responses to combat infectious pathogens by driving production of type I interferons. TBK1 also controls metabolic processes and promotes oncogeneâ induced cell proliferation and survival. Here, we demonstrate that TBK1 activates mTOR complex 1 (mTORC1) directly. In cultured cells, TBK1 associates with and activates mTORC1 through siteâ specific mTOR phosphorylation (on S2159) in response to certain growth factor receptors (i.e., EGFâ receptor but not insulin receptor) and pathogen recognition receptors (PRRs) (i.e., TLR3; TLR4), revealing a stimulusâ selective role for TBK1 in mTORC1 regulation. By studying cultured macrophages and those isolated from genome edited mTOR S2159A knockâ in mice, we show that mTOR S2159 phosphorylation promotes mTORC1 signaling, IRF3 nuclear translocation, and IFNâ β production. These data demonstrate a direct mechanistic link between TBK1 and mTORC1 function as well as physiologic significance of the TBK1â mTORC1 axis in control of innate immune function. These data unveil TBK1 as a direct mTORC1 activator and suggest unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity, tumorigenesis, and disorders linked to chronic inflammation.SynopsisTBK1, an IKKâ related kinase that drives interferon production as well cancer cell proliferation and survival, phosphorylates mTOR to activate mTORC1 in response to EGF and innate immune agonists, suggesting unanticipated roles for mTORC1 downstream of TBK1 in control of innate immunity and tumorigenesis.TBK1 interacts with mTORC1 and phosphorylates mTOR on S2159 to increase its catalytic activity.Cells lacking TBK1 or expressing a mTOR S2159A allele exhibit reduced mTORC1 signaling in response to EGFâ receptor and TLR3/4 activation.Primary macrophages derived from genome edited mTOR S2159A mice exhibit reduced mTORC1 signaling in response to TLR3/4 activation.Primary macrophages treated with rapamycin as well as those derived from mTORS2159A mice produce reduced levels of IFNâ β due to impaired nuclear translocation of the transcription factor IRF3.Innate immune kinase TBK1â dependent activation of mTORC1 occurs in response to pathogen recognition and EGF receptor activation and drives interferon production, thus highlighting the role of mTOR for innate immunity.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/1/embj201696164.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/2/embj201696164.reviewer_comments.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/3/embj201696164_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/141029/4/embj201696164-sup-0001-EVFigs.pd
Financial considerations in the conduct of multi-centre randomised controlled trials: evidence from a qualitative study.
National Coordinating Centre for Research Methodology; Medical Research Council, UK Department of Health; Chief Scientist OfficeNot peer reviewedPublisher PD
Rethinking irrigation modernisation: Realising multiple objectives through the integration of fisheries
Irrigation has been, and will remain, instrumental in addressing water security (Sustainable Development Goal (SDG) 6), food insecurity (SDG 2) and poverty (SDG 1) goals. However, the global context in which irrigation takes place is changing rapidly. A call for healthier and more sustainable food systems is placing new demands on how irrigation is developed and managed. Growing pressures from competing water uses in the domestic and industrial sectors, as well increasing environmental awareness, mean irrigation is increasingly called on to perform better, delivering acceptable returns on investment and simultaneously improving food security, rural livelihoods and nutrition, as well as supporting environmental conservation. Better integration of fisheries (including aquaculture) in irrigation planning, investment and management can contribute to the modernisation of irrigation and the achievement of the multiple objectives that it is called on to deliver. A framework illustrating how fisheries can be better integrated with irrigation, and how the two can complement each other across a range of scales, from scheme to catchment and, ultimately, national level, is presented
- …