159 research outputs found

    Procoagulant Adaptation of a Blood Coagulation Prothrombinase-like Enzyme Complex in Australian Elapid Venom

    Get PDF
    The macromolecular enzyme complex prothrombinase serves an indispensable role in blood coagulation as it catalyzes the conversion of prothrombin to thrombin, a key regulatory enzyme in the formation of a blood clot. Interestingly, a virtually identical enzyme complex is found in the venom of some Australian elapid snakes, which is composed of a cofactor factor Va-component and a serine protease factor Xa-like subunit. This review will provide an overview of the identification and characterization of the venom prothrombinase complex and will discuss the rationale for its powerful procoagulant nature responsible for the potent hemostatic toxicity of the elapid venom

    A Novel Non-Lens βγ−Crystallin and Trefoil Factor Complex from Amphibian Skin and Its Functional Implications

    Get PDF
    In vertebrates, non-lens betagamma-crystallins are widely expressed in various tissues, but their functions are unknown. The molecular mechanisms of trefoil factors, initiators of mucosal healing and being greatly involved in tumorigenesis, have remained elusive.A naturally existing 72-kDa complex of non-lens betagamma-crystallin (alpha-subunit) and trefoil factor (beta-subunit), named betagamma-CAT, was identified from frog Bombina maxima skin secretions. Its alpha-subunit and beta-subunit (containing three trefoil factor domains), with a non-covalently linked form of alphabeta(2), show significant sequence homology to ep37 proteins, a group of non-lens betagamma-crystallins identified in newt Cynops pyrrhogaster and mammalian trefoil factors, respectively. betagamma-CAT showed potent hemolytic activity on mammalian erythrocytes. The specific antiserum against each subunit was able to neutralize its hemolytic activity, indicating that the two subunits are functionally associated. betagamma-CAT formed membrane pores with a functional diameter about 2.0 nm, leading to K(+) efflux and colloid-osmotic hemolysis. High molecular weight SDS-stable oligomers (>240-kDa) were detected by antibodies against the alpha-subunit with Western blotting. Furthermore, betagamma-CAT showed multiple cellular effects on human umbilical vein endothelial cells. Low dosages of betagamma-CAT (25-50 pM) were able to stimulate cell migration and wound healing. At high concentrations, it induced cell detachment (EC(50) 10 nM) and apoptosis. betagamma-CAT was rapidly endocytosed via intracellular vacuole formation. Under confocal microscope, some of the vacuoles were translocated to nucleus and partially fused with nuclear membrane. Bafilomycin A1 (a specific inhibitor of the vacuolar-type ATPase) and nocodazole (an agent of microtuble depolymerizing), while inhibited betagamma-CAT induced vacuole formation, significantly inhibited betagamma-CAT induced cell detachment, suggesting that betagamma-CAT endocytosis is important for its activities.These findings illustrate novel cellular functions of non-lens betagamma-cyrstallins and action mechanism via association with trefoil factors, serving as clues for investigating the possible occurrence of similar molecules and action mechanisms in mammals

    Preclinical Evaluation of Caprylic Acid-Fractionated IgG Antivenom for the Treatment of Taipan (Oxyuranus scutellatus) Envenoming in Papua New Guinea

    Get PDF
    articulo (arbitrado) -- Universidad de Costa Rica, Instituto de Investigaciones Clodomiro Picado, 2011Background: Snake bite is a common medical emergency in Papua New Guinea (PNG). The taipan, Oxyuranus scutellatus, inflicts a large number of bites that, in the absence of antivenom therapy, result in high mortality. Parenteral administration of antivenoms manufactured in Australia is the current treatment of choice for these envenomings. However, the price of these products is high and has increased over the last 25 years; consequently the country can no longer afford all the antivenom it needs. This situation prompted an international collaborative project aimed at generating a new, low-cost antivenom against O. scutellatus for PNG. Methodology/Principal Findings: A new monospecific equine whole IgG antivenom, obtained by caprylic acid fractionation of plasma, was prepared by immunising horses with the venom of O. scutellatus from PNG. This antivenom was compared with the currently used F(ab’)2 monospecific taipan antivenom manufactured by CSL Limited, Australia. The comparison included physicochemical properties and the preclinical assessment of the neutralisation of lethal neurotoxicity and the myotoxic, coagulant and phospholipase A2 activities of the venom of O. scutellatus from PNG. The F(ab’)2 antivenom had a higher protein concentration than whole IgG antivenom. Both antivenoms effectively neutralised, and had similar potency, against the lethal neurotoxic effect (both by intraperitoneal and intravenous routes of injection), myotoxicity, and phospholipase A2 activity of O. scutellatus venom. However, the whole IgG antivenom showed a higher potency than the F(ab’)2 antivenom in the neutralisation of the coagulant activity of O. scutellatus venom from PNG. Conclusions/Significance: The new whole IgG taipan antivenom described in this study compares favourably with the currently used F(ab’)2 antivenom, both in terms of physicochemical characteristics and neutralising potency. Therefore, it should be considered as a promising low-cost candidate for the treatment of envenomings by O. scutellatus in PNG, and is ready to be tested in clinical trials.This study was supported by Vicerrectoría de Investigación, Universidad de Costa Rica (project 741-A9-003); the PNG Office of Higher Education, CTP Limited (Milne Bay Estates), and the Australian Venom Research Unit (University of Melbourne), which is funded by the Australian Government Department of Health and Ageing, the Australia Pacific Science Foundation and Snowy Nominees. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Venom down under: Dynamic evolution of Australian elapid snake toxins

    Get PDF
    Despite the unparalleled diversity of venomous snakes in Australia, research has concentrated on a handful of medically significant species and even of these very few toxins have been fully sequenced. In this study, venom gland transcriptomes were sequenced from eleven species of small Australian elapid snakes, from eleven genera, spanning a broad phylogenetic range. The particularly large number of sequences obtained for three-finger toxin (3FTx) peptides allowed for robust reconstructions of their dynamic molecular evolutionary histories. We demonstrated that each species preferentially favoured different types of α-neurotoxic 3FTx, probably as a result of differing feeding ecologies. The three forms of α-neurotoxin [Type I (also known as (aka): short-chain), Type II (aka: long-chain) and Type III] not only adopted differential rates of evolution, but have also conserved a diversity of residues, presumably to potentiate prey-specific toxicity. Despite these differences, the different α-neurotoxin types were shown to accumulate mutations in similar regions of the protein, largely in the loops and structurally unimportant regions, highlighting the significant role of focal mutagenesis. We theorize that this phenomenon not only affects toxin potency or specificity, but also generates necessary variation for preventing/delaying prey animals from acquiring venom-resistance. This study also recovered the first full-length sequences for multimeric phospholipase A2 PLA2) ‘taipoxin/paradoxin’ subunits from non-Oxyuranus species, confirming the early recruitment of this extremely potent neurotoxin complex to the venom arsenal of Australian elapid snakes. We also recovered the first natriuretic peptides from an elapid that lack the derived C-terminal tail and resemble the plesiotypic form (ancestral character state) found in viper venoms. This provides supporting evidence for a single early recruitment of natriuretic peptides into snake venoms. Novel forms of kunitz and waprin peptides were recovered, including dual domain kunitz-kunitz precursors and the first kunitz-waprin hybrid precursors from elapid snakes. The novel sequences recovered in this study reveal that the huge diversity of unstudied venomous Australian snakes are of considerable interest not only for the investigation of venom and whole organism evolution but also represent an untapped bioresource in the search for novel compounds for use in drug design and development.Timothy N. W. Jackson , Kartik Sunagar, Eivind A. B. Undheim, Ivan Koludarov, Angelo H. C. Chan, Kate Sanders, Syed A. Ali, Iwan Hendrikx, Nathan Dunstan and Bryan G. Fr

    Experimental pathology of local tissue damage induced by Bothrops asper snake venom

    Get PDF
    Envenomations by Bothrops asper are often associated with complex and severe local pathological manifestations, including edema, blistering, dermonecrosis, myonecrosis and hemorrhage. The pathogenesis of these alterations has been investigated at the experimental level. These effects are mostly the consequence of the direct action of zinc-dependent metalloproteinases (SVMPs) and myotoxic phospholipases A2 (PLA2s). SVMPs induce hemorrhage, blistering, dermonecrosis and general extracellular matrix degradation, whereas PLA2s induce myonecrosis and also affect lymphatic vessels. In addition, the prominent vascular alterations leading to hemorrhage and edema may contribute to ischemia and further tissue necrosis. The mechanisms of action of SVMPs and PLA2s are discussed in detail in this review. Venom-induced tissue damage plays also a role in promoting bacterial infection. A prominent inflammatory reaction develops as a consequence of these local pathological alterations, with the synthesis and release of abundant mediators, resulting in edema and pain. However, whether inflammatory cells and mediators contribute to further tissue damage is not clear at present. Muscle tissue regeneration after venom-induced pathological effects is often impaired, thus resulting in permanent tissue loss and dysfunction. SVMP-induced microvessel damage is likely to be responsible of this poor regenerative outcome. Antivenoms are only partially effective in the neutralization of B. asper-induced local effects, and the search for novel toxin inhibitors represents a potential avenue for improving the treatment of this serious aspect of snakebite envenomation.UCR::Vicerrectoría de Investigación::Unidades de Investigación::Ciencias de la Salud::Instituto Clodomiro Picado (ICP

    Manganese trends in a sample of thin and thick disk stars : The origin of Mn

    No full text
    Context. Manganese is an iron-peak element and although the nucleosynthesis path that leads to its formation is fairly well understood, it remains unclear which objects, SN II and/or SN Ia, that contribute the majority of Mn to the interstellar medium. It also remains unclear to which extent the supernovae Mn yields depend on the metallicity of the progenitor star or not. Aims. By using a well studied and well defined sample of 95 dwarf stars we aim at further constraining the formation site(s) of Mn. Methods. We derive Mn abundances through spectral synthesis of four Mn I lines at 539.4, 549.2, 601.3, and 601.6 nm. Stellar parameters and data for oxygen are taken from Bensby et al. (2003, 2004, 2005). Results. When comparing our Mn abundances with O abundances for the same stars we find that the abundance trends in the stars with kinematics typical of the thick disk can be explained by metallicity dependent yields from SN II. We go on and combine our data for dwarf stars in the disks with data for dwarf and giant stars in the metal-poor thick disk and halo from the literature. We find that dwarf and giant stars show the same trends, which indicates that neither non-LTE nor evolutionary effects are a major concern for Mn. Furthermore, the [Mn/O] vs. [O/H] trend in the halo is flat. Conclusions. We conclude that the simplest interpretation of our data is that Mn is most likely produced in SN II and that the Mn yields for such SNae must be metallicity dependent. Contribution from SN Ia in the metal-rich thin disk can not, however, be excluded
    • …
    corecore