57 research outputs found
Balancing end-to-end budgets of the Georges Bank ecosystem
Author Posting. © Elsevier, 2007. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Progress In Oceanography 74 (2007): 423-448, doi:10.1016/j.pocean.2007.05.003.Oceanographic regimes on the continental shelf display a great range in the time scales of physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed physical coupling at intermediate scales of weeks to months means that the open ocean simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting from the fish populations, are insufficient to constrain a system involving extensive nutrient recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-benthic interactions are found on all continental shelves but are particularly important on the relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the
lower food web for three physical regimes (well mixed, transitional and stratified) and for three seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral exchange between the three regimes are important for zooplankton production as well as for nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-1999, provide input to an upper food web. Diets of commercial fish populations are used to calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for four decades, 1963-2002, between which there were major changes in the fish communities. Comparisons of inputs from the lower web with fish energetic requirements for plankton and benthos indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. However, for the first decade, the fish food requirements were significantly less than the inputs. This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may determine overall fish yields.The research was done under the aegis of the U.S.-GLOBEC Northwest Atlantic Georges Bank Study, a program sponsored jointly by the U.S. National Science Foundation and the U.S. National Oceanic and Atmospheric Administration. We acknowledge NOAA-CICOR award NA17RJ1233 (J.H. Steele), NSF awards OCE0217399 (D.J. Gifford), OCE0217122 (J.J. Bisagni) and OCE0217257 (M.E. Sieracki). W.T. Stockhausen was supported by the NOAA Sponsored Coastal Ocean Research Program
Sustained VWFâADAMTSâ13 axis imbalance and endotheliopathy in long COVID syndrome is related to immune dysfunction
Background
Prolonged recovery is common after acute SARS-CoV-2 infection; however, the pathophysiological mechanisms underpinning Long COVID syndrome remain unknown. VWF/ADAMTS-13 imbalance, dysregulated angiogenesis, and immunothrombosis are hallmarks of acute COVID-19. We hypothesized that VWF/ADAMTS-13 imbalance persists in convalescence together with endothelial cell (EC) activation and angiogenic disturbance. Additionally, we postulate that ongoing immune cell dysfunction may be linked to sustained EC and coagulation activation.
Patients and methods
Fifty patients were reviewed at a minimum of 6âweeks following acute COVID-19. ADAMTS-13, Weibel Palade Body (WPB) proteins, and angiogenesis-related proteins were assessed and clinical evaluation and immunophenotyping performed. Comparisons were made with healthy controls (n = 20) and acute COVID-19 patients (n = 36).
Results
ADAMTS-13 levels were reduced (p = 0.009) and the VWF-ADAMTS-13 ratio was increased in convalescence (p = 0.0004). Levels of platelet factor 4 (PF4), a putative protector of VWF, were also elevated (p = 0.0001). A non-significant increase in WPB proteins Angiopoietin-2 (Ang-2) and Osteoprotegerin (OPG) was observed in convalescent patients and WPB markers correlated with EC parameters. Enhanced expression of 21 angiogenesis-related proteins was observed in convalescent COVID-19. Finally, immunophenotyping revealed significantly elevated intermediate monocytes and activated CD4+ and CD8+ T cells in convalescence, which correlated with thrombin generation and endotheliopathy markers, respectively.
Conclusion
Our data provide insights into sustained EC activation, dysregulated angiogenesis, and VWF/ADAMTS-13 axis imbalance in convalescent COVID-19. In keeping with the pivotal role of immunothrombosis in acute COVID-19, our findings support the hypothesis that abnormal T cell and monocyte populations may be important in the context of persistent EC activation and hemostatic dysfunction during convalescence
ADAMTS13 regulation of VWF multimer distribution in severe COVIDâ19
Background
Consistent with fulminant endothelial cell activation, elevated plasma von Willebrand factor (VWF) antigen levels have been reported in patients with COVID-19. The multimeric size and function of VWF are normally regulated through A Disintegrin And Metalloprotease with ThrombSpondin Motif type 1 motif, member 13 (ADAMTS-13)--mediated proteolysis.
Objectives
This study investigated the hypothesis that ADAMTS-13 regulation of VWF multimer distribution may be impaired in severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection contributing to the observed microvascular thrombosis.
Patients and Methods
Patients with COVID-19 (n = 23) were recruited from the Beaumont Hospital Intensive Care Unit (ICU) in Dublin. Plasma VWF antigen, multimer distribution, ADAMTS-13 activity, and known inhibitors thereof were assessed.
Results
We observed markedly increased VWF collagen-binding activity in patients with severe COVID-19 compared to controls (median 509.1 versus 94.3 IU/dl). Conversely, plasma ADAMTS-13 activity was significantly reduced (median 68.2 IU/dl). In keeping with an increase in VWF:ADAMTS-13 ratio, abnormalities in VWF multimer distribution were common in patients with COVID-19, with reductions in high molecular weight VWF multimers. Terminal sialylation regulates VWF susceptibility to proteolysis by ADAMTS-13 and other proteases. We observed that both N- and O-linked sialylation were altered in severe COVID-19. Furthermore, plasma levels of the ADAMTS-13 inhibitors interleukin-6, thrombospondin-1, and platelet factor 4 were significantly elevated.
Conclusions
These findings support the hypothesis that SARS-CoV-2 is associated with profound quantitative and qualitative increases in plasma VWF levels, and a multifactorial down-regulation in ADAMTS-13 function. Further studies will be required to determine whether therapeutic interventions to correct ADAMTS-13-VWF multimer dysfunction may be useful in COVID-microvascular thrombosis and angiopathy
The SAMI Galaxy Survey: Spatially resolving the environmental quenching of star formation in GAMA galaxies
We use data from the Sydney-AAO Multi-Object Integral Field Spectrograph (SAMI) Galaxy Survey and the Galaxy And Mass Assembly (GAMA) survey to investigate the spatially-resolved signatures of the environmental quenching of star formation in galaxies. Using dust-corrected measurements of the distribution of Hα emission we measure the radial profiles of star formation in a sample of 201âstar-forming galaxies covering three orders of magnitude in stellar mass (MâMâ; 108.1-1010.95âMâ) and in 5th nearest neighbour local environment density (ÎŁ5; 10â1.3- 102.1âMpcâ2). We show that star formation rate gradients in galaxies are steeper in dense (log10(ÎŁ5/Mpc2) > 0.5) environments by 0.58 ± 0.29âdexâreâ1 in galaxies with stellar masses in the range 1010 1.0). These lines of evidence strongly suggest that with increasing local environment density the star formation in galaxies is suppressed, and that this starts in their outskirts such that quenching occurs in an outside-in fashion in dense environments and is not instantaneous
Highly-parallelized simulation of a pixelated LArTPC on a GPU
The rapid development of general-purpose computing on graphics processing units (GPGPU) is allowing the implementation of highly-parallelized Monte Carlo simulation chains for particle physics experiments. This technique is particularly suitable for the simulation of a pixelated charge readout for time projection chambers, given the large number of channels that this technology employs. Here we present the first implementation of a full microphysical simulator of a liquid argon time projection chamber (LArTPC) equipped with light readout and pixelated charge readout, developed for the DUNE Near Detector. The software is implemented with an end-to-end set of GPU-optimized algorithms. The algorithms have been written in Python and translated into CUDA kernels using Numba, a just-in-time compiler for a subset of Python and NumPy instructions. The GPU implementation achieves a speed up of four orders of magnitude compared with the equivalent CPU version. The simulation of the current induced on 10^3 pixels takes around 1 ms on the GPU, compared with approximately 10 s on the CPU. The results of the simulation are compared against data from a pixel-readout LArTPC prototype
Caffeine affects childrenâs ERPs and performance in an equiprobable go/no-go task: Testing a processing schema
Caffeineâs stimulant properties were used to test a proposed processing schema for childrenâs processing stages in the equiprobable auditory go/no-go task. Active control-related ERP components were hypothesized to be differentially enhanced by caffeine. Caffeine (80ĂÂ mg) was administered in a counterbalanced, randomized, double-blind, placebo-controlled, cross-over study of 24 children, aged 8â12ĂÂ years. Four blocks of an equiprobable auditory go/no-go task were completed on each of two occasions, while on or off caffeine. ERP data sets from each condition (caffeine/go, placebo/go, caffeine/no-go, placebo/no-go) were subjected to separate temporal PCAs with extraction and varimax rotation of all components. Caffeine significantly reduced reaction time and go omission errors, and enhanced go PN, N2c, and P3b, and no-go N1-1 and N2b. This selective enhancement of different go/no-go components by caffeine matched the predicted amplification of biomarkers of childrenâs active control processing in this task. Some unexpected findings also support further refinements in the child processing schema
Persistent endotheliopathy in the pathogenesis of long COVID syndrome
Background
Persistent symptoms including breathlessness, fatigue, and decreased exercise tolerance have been reported in patients after acute SARS-CoV-2 infection. The biological mechanisms underlying this âlong COVIDâ syndrome remain unknown. However, autopsy studies have highlighted the key roles played by pulmonary endotheliopathy and microvascular immunothrombosis in acute COVID-19.
Objectives
To assess whether endothelial cell activation may be sustained in convalescent COVID-19 patients and contribute to long COVID pathogenesis.
Patients and Methods
Fifty patients were reviewed at a median of 68 days following SARS-CoV-2 infection. In addition to clinical workup, acute phase markers, endothelial cell (EC) activation and NETosis parameters and thrombin generation were assessed.
Results
Thrombin generation assays revealed significantly shorter lag times (p < .0001, 95% CI â2.57 to â1.02 min), increased endogenous thrombin potential (p = .04, 95% CI 15â416 nM/min), and peak thrombin (p < .0001, 95% CI 39â93 nM) in convalescent COVID-19 patients. These prothrombotic changes were independent of ongoing acute phase response or active NETosis. Importantly, EC biomarkers including von Willebrand factor antigen (VWF:Ag), VWF propeptide (VWFpp), and factor VIII were significantly elevated in convalescent COVID-19 compared with controls (p = .004, 95% CI 0.09â0.57 IU/ml; p = .009, 95% CI 0.06â0.5 IU/ml; p = .04, 95% CI 0.03â0.44 IU/ml, respectively). In addition, plasma soluble thrombomodulin levels were significantly elevated in convalescent COVID-19 (p = .02, 95% CI 0.01â2.7 ng/ml). Sustained endotheliopathy was more frequent in older, comorbid patients, and those requiring hospitalization. Finally, both plasma VWF:Ag and VWFpp levels correlated inversely with 6-min walk tests.
Conclusions
Collectively, our findings demonstrate that sustained endotheliopathy is common in convalescent COVID-19 and raise the intriguing possibility that this may contribute to long COVID pathogenesis
- âŠ