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Abstract 

 

 Oceanographic regimes on the continental shelf display a great range in the time scales of 

physical exchange, biochemical processes and trophic transfers. The close surface-to-seabed 

physical coupling at intermediate scales of weeks to months means that the open ocean 

simplification to a purely pelagic food web is inadequate. Top-down trophic depictions, starting 

from the fish populations, are insufficient to constrain a system involving extensive nutrient 

recycling at lower trophic levels and subject to physical forcing as well as fishing. These pelagic-

benthic interactions are found on all continental shelves but are particularly important on the 

relatively shallow Georges Bank in the northwest Atlantic. We have generated budgets for the 
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lower food web for three physical regimes (well mixed, transitional and stratified) and for three 

seasons (spring, summer and fall/winter). The calculations show that vertical mixing and lateral 

exchange between the three regimes are important for zooplankton production as well as for 

nutrient input. Benthic suspension feeders are an additional critical pathway for transfers to 

higher trophic levels. Estimates of production by mesozooplankton, benthic suspension feeders 

and deposit feeders, derived primarily from data collected during the GLOBEC years of 1995-

1999, provide input to an upper food web. Diets of commercial fish populations are used to 

calculate food requirements in three fish categories, planktivores, benthivores and piscivores, for 

four decades, 1963-2002, between which there were major changes in the fish communities. 

Comparisons of inputs from the lower web with fish energetic requirements for plankton and 

benthos  indicate that we obtained reasonable agreement for the last three decades, 1973 to 2002. 

However, for the first decade, the fish food requirements were significantly less than the inputs. 

This decade, 1963-1972, corresponds to a period characterized by a strong Labrador Current and 

lower nitrate levels at the shelf edge, demonstrating how strong bottom-up physical forcing may 

determine overall fish yields. 
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1. Introduction 

 

 The primary objective of this study is to construct a budget for the fluxes of nutrients and 

carbon through the Georges Bank ecosystem. Energy or material flows within ecosystems are 

usually portrayed as steady-state networks in which the nodes are trophic groups and the links 

are fluxes from one node to another. The mass balance relations are linear in the sense that the 

output from any node is proportional to the input. The earliest networks for marine ecosystems 

had relatively simple uni-directional flows of carbon or biomass from primary production to 

fishery yields (e.g. Steele, 1965; Sissenwine et al., 1984). Since then our appreciation of the 

importance of recycling of nutrients within the microbial loop (Azam et al., 1983) has 

complicated analysis of the lower web. In addition, increasing knowledge of fish stocks and their 

diets has encouraged a top-down approach to food web fluxes through the upper levels of the 

web (Christensen and Pauly, 1993) 
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  We use a linear steady-state representation of the food web. Because of the great range in 

time scales – from phytoplankton to fish – and the different units – nitrogen and carbon - it is 

necessary to split the web into two components, lower and upper webs (Fig. 1). For the lower 

web we take nitrate input and ammonium recycling as the drivers for this system and calculate 

the output as plankton and benthos production. For the upper web we use biomass and diet data 

for the fish stocks as the driver for a top-down calculation of the fish food requirements in terms 

of plankton and benthos. The data for the lower web are derived predominantly from the 1980’s 

and 1990’s, especially the GLOBEC surveys during 1995-1999 (Wiebe et al., 2003). The data on 

fish biomass span four decades, 1963-2002.  For an initial integration of upper and lower webs, 

we use the period 1993-2002. We compare the bottom-up and top-down carbon fluxes, and 

reconcile these inputs by seeking values for the fluxes through the carnivorous plankton and 

benthos. We then evaluate how far these solutions can be applied to the fish populations in the 

three earlier decades. Lastly we compare the estimates of plankton and benthos with available 

observations. These comparisons provide a broad check on the solutions obtained for the 

intermediate trophic levels. 

 

The structure of the paper is as follows.  

(1) We begin with a review of the necessary units and conversion factors for this wide range 

of ecological components.  

(2) We then describe the calculations for the lower web in terms of the physical processes of 

vertical and horizontal mixing on Georges Bank and the recycling of nutrients. We 
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determine the annual production, in carbon units, of plankton and benthos averaged over 

the entire Bank.  

(3) For the upper web, we estimate food intake by three fish guilds, planktivores, benthivores 

and piscivores, from fish biomass and diet data (Garrison and Link, 2000; Link and 

Almeida, 2000). These values are transformed to give food requirements for plankton and 

benthos in carbon units for the four decades.  

(4) Using these estimates for the lower and upper webs, we calculate the values of fluxes 

through the invertebrate planktonic and benthic carnivores (Fig. 1) that will satisfy the 

top-down estimates for the four decades, 1963-2002, and bottom up estimates based on 

1995-1999. For the decade 1963-1972, where there is no match of the fish consumption 

of plankton with the production estimates, we seek an explanation within the changing 

physical regime. 

(5) As a test of these results, we compare data on plankton and benthos biomass with 

estimates from the budget calculations transformed from fluxes to carbon concentrations. 

(6) We compare our results with work in other areas. 

 

2. Units and Conversion Factors 

 

Studies of components of the Georges Bank food web (Fig. 1) range from 

biogeochemical analyses of nitrogen fluxes in the lower web, to biomass estimates of individual 

fish populations. To combine these we need to (1) compare measures in units of biomass, carbon 

and nitrogen, (2) convert biomass estimates to production and consumption, and vice versa, and 

(3) transfer these measures between different trophic levels. 
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2.1. Biomass units  

 

Carbon is the common currency in the upper and lower trophic webs. There can be 

considerable variation in the carbon:nitrogen ratios for different components of the microbial 

loop, such as phytoplankton, microzooplankton and detritus (Parsons and Takahashi, 1973; 

Harris et al., 2000) and at different times and regions (Sambrotto et al, 1993). We do not attempt 

to incorporate these variations but use the traditional Redfield C:N ratio of 106:16 by atoms. 

When presenting outputs from the lower web the nitrogen fluxes are converted to g C.m-2. For 

the upper web, biomass is measured as wet weight (or live weight) of organisms.  There are a 

wide range of estimates for carbon:biomass ratios for fish. Because we are dealing with Georges 

Bank communities, we use the value obtained from these communities, carbon:biomass = 0.114 

(Grosslein et al. 1980). Zooplankton, carbon is converted from wet weight (0.12) and 

displacement volume (0.096) according to Harris et al (2000). Benthic biomass data are given in 

kilocalories and converted to carbon units according to Parsons and Takahashi (1973), where      

1 g C=11 kcal. 

 

2.2. Transfer efficiency 

 

The fraction of food intake converted to growth is a critical factor affecting estimates of 

flux through the food web (Ryther, 1969). Again, there are a wide variety of estimates. Rather 

than apply particular values to individual species or situations, we use general ranges from the 

literature for the non-dimensional ratios of growth:intake. For actively growing copepods, the 
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ratio may be as high as 0.30-0.45 (Mullin and Brooks, 1970), but a value of 0.30 is typically used 

(Harris et al, 2000). We take a range of 0.10-0.30. In the calculations for the lower food web, we 

find this is consistent with the range of winter to spring and summer values corresponding to 

expected components of the mesozooplankton life cycles (see below). For fish, a transfer 

efficiency of 0.10 is generally used (Christensen and Pauly, 1993), but Rothschild (1986) and 

others query this low value. We use 0.10 for the recruited stocks and 0.30 for the juveniles. For 

the meio-, macro- and predatory benthos we use an intermediate value of 0.20. In the lower web 

we need to account for all of the other “outputs" by plankton. We assume that the fraction of 

intake that is particulate fecal material is equal to the growth fraction. The remainder of the 

nitrogen intake goes to soluble excretion and, via bacteria, to recycled ammonium. 

 

2.3. Consumption to biomass (C:B) ratios 

 

The basic units in the calculations are fluxes between food web components. The 

common unit is g C.m-2.yr-1. The survey data for fish are in biomass units. To convert these to 

consumption requires estimates of the C:B ratios. We use the Grosslein et al.'s (1980) values of 

3.9 yr-1 for benthivores, 4.1 yr-1 for piscivores, and 4.4 yr-1 for planktivores. To convert seasonal 

estimates of plankton flux to biomass, it is necessary to consider temperature and size. We use 

the Hirst and Lampitt (1998) formulation for all species and take an average value of 0.25 for the 

transfer efficiency. Because the C:B ratios  of phytoplankton, bacteria and microzooplankton are 

higher than those of  zooplankton, values of 0.5-1.0  d-1are used here (Table 1). This leaves 

detritus, an omnipresent but ill-defined component.  Although these values remain uncertain, we 

have used values in the “meso” rather than the “micro” range for turnover rates.  
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3. Lower Food web 

 

Georges Bank is an off-shore shallow shelf located to the southeast of the Gulf of Maine 

in the northwest Atlantic (Fig. 2a).  We characterize its spatial structure by specifying three 

regimes in terms of vertical hydrographic processes after Pingree et al. (1978) (Fig. 2b, 2c, and 

2d).  The regimes are Mixed (always well mixed), Transitional (episodically mixed) and 

Stratified (seasonally stratified). These correspond to regions defined from tidal and shelf-edge 

fronts and seasonal mixing (Simpson & Hunter, 1974). The sizes of the spatial domains (Table 2) 

were determined from analysis of satellite-derived sea surface temperature fields (Mavor and 

Bisagni, 2001). The seasonal components of the annual production are defined by the 

temperature and nitrate cycles and are represented by a Spring period (May-June) of nutrient 

draw down, a Summer period (July-October) characterized by constant, low nutrients, and a 

Fall/Winter period (November-April) when nutrients rebuild or regenerate. The result is a 

combined space-time division into nine separate scenarios.  For each scenario, a steady state is 

assumed for the fluxes of nitrogen through the ecosystem. The sum of these fluxes provides the 

input to the upper web. 

 

  

3.1. New and total primary production 

 

The underlying assumption from open ocean studies is that ammonium (NH4) uptake 

represents the recycled component of production whereas nitrate (NO3) uptake determines new 

production because the NO3 comes from deeper water below the euphotic zone (Eppley and 
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Peterson, 1979; Laws et al., 2000). In contrast to the open ocean, the benthic food web is an 

important component of nutrient recycling on continental shelves. Nitrification of organic matter 

to NO3 is usually considered to be a relatively slow process (Harvey, 1957). Although nitrifying 

bacteria are widely distributed in the ocean, they are rarely abundant and their growth rates are 

believed to be slow. The extent to which heterotrophic bacteria oxidize NH4 to NO2 and NO3 is 

not well understood (Karl and Michaels, 2001), except that it is inhibited by light and occurs 

below the 10% light level (Ward, 2000).  Karl and Michaels (2001) cite experimental work by 

von Brand and Rakestraw (see Harvey, 1957) done more than 50 years ago that shows a two-

month time lag for the formation of NO3 from NH4. Anderson and Williams (1998) propose a 

value of 0.033 d-1 for the rate of conversion of organic nitrogen in the sediment compartment to 

ammonium, and 0.03 d-1 for nitrification in the water column. Observations and models of 

phosphate regeneration below the euphotic zone in the North Sea suggest the same time scale 

from uptake to reappearance in the water column (Steele, 1956; Luff and Moll, 2004). The 

residence time of NH4 in the euphotic zone during spring, summer and fall is on the order of 

days, and should be shorter than regeneration in winter. On this basis we assume that any 

significant input of NO3 to the euphotic zone comes from deep water.  

 

 

The daily rate of NO3 uptake by phytoplankton over any interval ∆t can be calculated 

from the sum of the draw-down of NO3 over the euphotic zone, depth z*, plus the flux of NO3 

through the base of the euphotic zone (Bisagni, 2003), determined by the vertical eddy 

diffusivity, Kz in nitrogen units    
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NP = ∆ [∫z*NO3.dz] /∆t – [Kz.∂ NO3/∂z]z*      (1) 

   

where NP is new production.  The potential new production (PNP) in carbon units  

(g C.m-2.d-1) is 

 

PNP =79.5 . NP. 

 

Values for integrated total primary production (ITPP) from the surface to the base of the 

euphotic zone are determined from 14C uptake data for 1977-1982 (O'Reilly et al; 1987). The f-

ratio used here is defined as  

 

 f = PNP/ITPP. 

 

This ratio is not equivalent to that of Eppley and Peterson (1979), i.e., the ratio of the 

assimilation rate of new inorganic nitrogen [NO3] to total inorganic nitrogen [NO3 + NH4]. 

 

  The values of PNP, ITTP and f-ratio for the nine scenarios on Georges Bank were 

determined as follows.  PNP was calculated as 5-day averages using equation (1) based on 

estimates of the vertical eddy diffusivity on Georges Bank. Values of ITPP, PNP and f were 

calculated using the mean annual cycle curves from Bisagni (2003) for each of the nine scenarios 

(Table 3). Seasonally, new production is highest in the spring, reflecting the supply of new NO3 

onto the Bank. New production and corresponding f-ratios are highest in the Transition region 

(Table 3).  High total primary production in summer is sustained by recycled nutrients. 
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3.2. Physical exchange rates 

 The general pattern in these production estimates agrees well with other studies such as 

the 3-dimensional model of Franks and Chen (2001). However, the flux calculations for new 

production (Table 3) are purely 1-dimensional, estimating how much NO3 must be utilized 

within the euphotic zone plus mixing of NO3 into this zone (Eq. 1). This does not consider the 

lateral flux of NO3 needed to provide replenishment in the deeper layers (Fig. 3). We use 

estimates of this lateral nutrient flux to calculate the required physical exchanges (Table 4). 

These horizontal fluxes are determined for the three regions and three seasons by estimating the 

lateral exchange of water needed to provide the excess NO3 required for new production, over 

that available within the water column (Table 4). These inward fluxes in deeper water require 

physical losses in the upper layers that will export plankton. 

 The physical losses, F, in Table 4, are calculated as the fraction of water exported 

laterally per day from the euphotic (40m) zone to allow for import of deeper nutrient-rich water 

(see Fig. 3). 

 

F = (NP/40 +ΔNO3/Δt)/(DeepNO3 – SurfaceNO3)   (2) 

 

Where NP is new primary production, ∆NO3 is the seasonal increase in NO3 in the euphotic 

zone, and ∆t is length of season. 
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 At steady state in summer there must be a flux of NO3 into the euphotic zone to balance 

the uptake for NP. In fall and winter, the flux of NO3 from deep water must meet both new 

production and ∆NO3/∆t in the upper layer, although there may be some contribution from in situ 

regeneration.  Correspondingly, in spring much of NP occurs as draw-down of NO3 and the 

decrease in NO3 can offset much of the NP. For the Stratified region, the flux of NO3 occurs 

vertically across the bottom of the euphotic zone. For the Transition region there is flux through 

the deep boundary with the Stratified region (Fig. 3). The flux for the Mixed region is assumed 

to occur with deeper Transition region water. This is difficult to estimate, but the Mixed region is 

relatively small. These factors are reflected in the “Deep” values in Table 4 used to calculate F. 

We assume that the flux out of the Transition region into the Stratified region is balanced by 

similar loss from the Stratified region. The losses from the Mixed region are from a relatively 

small area and are assumed to go directly off the shelf, possibly to the northeast. 

 

The available calculations of nutrient flux based on observations are confined to the 

spring months. Townsend and Pettigrew (1997) estimated the flux into areas < 60 m depth as 3.4 

mM.m-2.d-1, or 0.085 mM m-3.d-1 for a 40 m euphotic zone. The calculated values of fractional 

exchange rates for the Mixed and Transition zones in spring give a range of 0.05-0.13 mM m-3.d-

1 (Table 4). Townsend and Pettigrew (1997) considered Horne et al.’s (1989) flux estimates to be 

significantly too high, and we agree. 

 

  These estimates of fractional exchange rates out of the regions are important for the 

plankton components of the webs because they can result in eventual wash-out from the Bank. 

Such advection has long been recognized as a potentially limiting factor for the transfer of 
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production to higher trophic levels, especially by the mesozooplankton (Cohen et al., 1982; 

Klein, 1987). Comparison of the mesozooplankton C:B values (Table 1) with the physical flux 

rates (Table 4) shows that the latter are comparable in winter but are an order of magnitude lower 

in summer. Thus physical fluxes play a significant, but variable, role in the budget. 

 

 

3.3. Network for the lower food web 

 

Energy or material flows within ecosystems are usually portrayed as linear steady-state 

networks in which the nodes are trophic groups and the links are fluxes from one node to 

another. The earliest networks for marine ecosystems (e.g. Steele, 1965; Sissenwine et al., 1984) 

had relatively simple uni-directional flows of carbon or biomass from primary production to 

fishery yields. In contemporary ecosystem models, nutrient recycling is a central component of 

the microbial web. 

 

 For the lower web, where all soluble and particulate pathways for nitrogen are accounted 

for by recycling of nitrogen 

 

Xi    =  ∑j aij. X j  + Ai- F i. Xi                                                                 (3) 

 

where  Xi  is production by ith trophic group (“compartment”),      

  aij  is allocation of production to Xi from other boxes Xj; ∑i a ij   = 1, 

  A i  are external inputs  (A i > 0),  
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             Fi  are fractional physical losses from Xi.   Fi  = F/(Ci /Bi), with F for each 

                        scenario from Table 4,  

and 

           Ci /Bi is turnover rate from Table 1 for the ith component. 

 

The ecosystem is contained within the euphotic zone for the Stratified and Transition regions but 

occupies the mixed layer in the Mixed region. Output occurs from (1) pelagic predation on 

mesozooplankton, (2) sinking of mesozooplankton fecal pellets to the seabed and their 

consumption by deposit feeders, and (3) filtering of large phytoplankton and microzooplankton 

by benthic suspension feeders.  

 

 There are obvious differences among the three regions. We assume there are no benthic 

suspension feeders in the Stratified region, and no deposit feeders in the Mixed region. This 

implies that there is no sinking in the Mixed region and all feces go directly to detritus in the 

water column. The most interesting and most productive area, the Transition region, has both 

types of benthic feeders.  The problem for this region is to apportion consumption of large 

phytoplankton and microzooplankton between mesozooplankton and benthic suspension feeders. 

There are no relevant estimates of consumption by suspension versus deposit feeding benthos. 

Because the biomasses of these components are about equal, we assume that suspension feeders 

consume about the same amount as deposit feeders whose food source, feces, is taken to be 30% 

of the mesozooplankton intake. On this basis, 23% of the large phytoplankton plus 

microzooplankton and detritus are allocated to the suspension feeders, with the remainder going 

to the mesozooplankton. Thus we define three different lower webs for the three regions.  
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A major variable in Fig. 1 is the “small” size fraction of phytoplankton production that 

goes to the microzooplankton, with the remainder (large phytoplankton and detritus) going to 

mesozooplankton and suspension feeders. This fraction is based on cell size, with 20 μm 

dividing small and large cells (Sieburth et al., 1978). Chlorophyll is assumed to be an indicator 

of the relative production in the two size fractions, and the values from O’Reilly et al. (1987) are 

used as a measure of this parameter (Table 3). 

 

In equations of the form (3), if  a ij, Fi and   Ai are known, then a unique solution for Xi   

can be obtained by matrix inversion. In practice some of aij are unknown, but there are also 

constraints on the Xi.  If the unknowns equal the constraints, then a solution may be found by 

searching parameter space. For the lower web we have one major constraint, the f-ratio, for each 

of the nine scenarios. The nature and rates of production of detritus and subsequent pathways are 

the most intractable of the processes in Fig. 1. This uncertainty includes the role of bacteria in 

transforming detritus to food for plankton or to NH4. We take the fraction of detritus (DR) that is 

recycled to NH4 as the major unknown.  By allowing the proportions of growth, feces and 

nutrient excretion for zooplankton to vary seasonally we have a second possible unknown in 

terms of the Transfer efficiency, TE.  Here we assume that 0.1<TE<0.3; and that TE takes the 

maximum value within the constraints. 

 

For each of the nine budgets we then seek values of the two parameters, TE and DR, that 

satisfy the constraint given by the f-ratio (Table 3) and lie within the ranges 0.10<TE< 0.30 and  

0< DR<1.0.  When these are satisfied, then the assumption that TE will take the maximum value 
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in the range gives values for TE and DR (Table 5). In 8 of the 9 scenarios this is an acceptable 

solution. The high f-ratio for Fall/Transition (Table 1), gives TE >> 0.3.  Because this high value 

is inconsistent with the other data, we use an interpolated value of f = 0.52. The Fall/Winter 

period is the most heterogeneous and has the least data, rendering the calculations for this period 

least reliable. Nevertheless, lower values of TE for the winter periods are reasonable. With this 

correction, a consistent picture of the lower web emerges from the calculations. 

 

The budgets for the nine scenarios can be summed (weighted by area and time) to give an 

integrated annual budget in carbon units for the lower food web of the entire Bank (Fig 4). The 

fecal material from mesozooplankton and suspension feeders is assumed to go to deposit feeders, 

where appropriate. This output requires conversion to production by deposit feeding 

macrobenthos. There are no data for the role of meiobenthos on Georges Bank. Steele (1965) 

derived a fraction of 40% for detritus input to meiobenthos in the North Sea. Given the much 

smaller fraction of Georges Bank that is primarily sedimentary, we use a value of 20%. 

Assuming that the macrobenthos eat the meiobenthos, and that both have a 20% transfer 

efficiency, the overall transfer efficiency is 16.8%, giving a value of 4.8 g C m-2.yr-1 for 

production of deposit feeding macrobenthos. 

 

The estimated outputs of plankton and benthos to the upper web are then 27.0 and            

10.5 g  C. m-2.yr-1, respectively. These form the input of food available to invertebrate carnivores 

and fish. Note that physical losses by advection off the Bank, 66 g C.m-2.yr-1 account for 

approximately half of the new production, but they are a much smaller fraction of net production,                   

362 g C.m-2.yr-1. 
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                     4. Upper food web 

 

4.1. Fish biomass  

 The biomass of 35 important fish and squid species (Table 6) was obtained from the 

Northeast Fisheries Science Center (NEFSC) standardized bottom-trawl survey (Azarovitz, 

1981; NEFSC, 1988; Smith, 2004). These species comprise more than 95% of the biomass of 

fish and squid on Georges Bank. Relative biomass estimates were converted to densities based 

on estimates of relative catch efficiencies (Edwards, 1960; Harley and Myers, 2001). The spring 

and fall trawl survey data were averaged to reduce interannual variability.  The 35 species were 

grouped into three trophic categories—benthivores, piscivores and planktivores—based on the 

NEFSC food-habits database (Link and Almeida, 2000). 

 

 Most of the variability in the fish and squid community arises from significant changes in 

the abundances of individual fish species (Fig. 5).  Biomass of the principal commercial 

species—cod, haddock and flounder—was reduced by fishing pressure in the 1970s and1980s 

(Mayo et al., 1992; Fogarty and Murawski, 1998; Collie and deLong, 1999).  Among the 

planktivorous fish, there was a peak in sand lance in the late 1970s and early 1980s (Fig. 5a).  

Herring and mackerel biomass increased in the most recent years, producing a sharp peak in 

planktivore biomass.  Piscivore biomass was maximal during the late 1970s and 1980s, largely 

because of increases in elasmobranches, winter skate and spiny dogfish (Fig. 5b).  The biomass 

of benthivorous fish declined with the reduction of haddock in the late 1960s, but has been 
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relatively constant since then (Fig. 5c).  Several non-commercial species, including ocean pout, 

sculpin, and little skate, compensated for the reduction in commercial species.   

 

4.2 Fish food requirements 

 

 The biomass data for the fish feeding guilds were grouped into four decades. Average 

diet composition data, weighted by the biomass of individual species, were calculated for each 

guild and decade (Table 7).   Conversion factors for biomass to carbon and for consumption-to-

biomass (C:B) ratios (see section 2) were used to convert the biomass data to food consumption 

in units of g C.m-2.yr-1 (Fig. 6a).    

  

The nominal members of each trophic category do not, understandably, confine 

themselves to a single diet type (Table 7). This omnivory is particularly true for the piscivores, 

which obtain only 1/3 of their diet from fish, but half from benthos, and the remainder from 

plankton (Garrison and Link, 2000). Additionally, the planktivores consume some benthos. The 

biomass estimates were combined with the food-habits data to estimate the actual consumption 

of benthos, fish and plankton over the four decades (Fig. 6b). This calculation converts the fish 

categories to functional groups rather than species guilds. 

 

 The estimates of fish dietary requirements do not include the pre-recruit fish of each 

species. Sissenwine et al. (1984) estimated the production of pre-recruit fish based on the 

assumption that cohort biomass is constant from larva to recruit (i.e., Mortality=Growth). They 

deduced that pre-recruit production was 33 to 50% of the total recruit production. Jones (1984) 
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demonstrated that the pre-recruit/recruit ratio can vary by a factor of four, depending on the 

population trajectory from larva to recruit.  Houde (1996) showed that the trajectory is concave 

downwards. Given these uncertainties, we derived alternate estimates.  We assumed that the 

piscivores eat only pre-recruits (including their own) and are the dominant predator on the pre-

recruits (Overholtz et al., 2000).  Piscivore consumption therefore provides an independent 

estimate of pre-recruit production.  Based on the diet data, our value is about 12% of recruit fish 

production, in agreement with Houde (1996).  Further, we assumed that the pre-recruits eat 

predominantly zooplankton and we allowed 25% of their diet to be benthos.  By taking the 

production/consumption ratio of pre-recruit fish as 0.3 (see Section 2), we obtain an estimate of 

their consumption of plankton and benthos. Given these assumptions, it is now possible to 

calculate the total consumption of plankton and benthos in each of the four decades (Fig. 6c).   

 

4.3. Comparisons with the lower web. 

 

We now have estimates of consumption by fish, and production from the lower food web, 

linked by other trophic groups (Fig. 7a). This introduces two poorly known, but critical, 

components-- invertebrate predators on the plankton and benthic inputs from the lower web.  The 

reconciliation of top-down and bottom-up forcing of the food web is reduced to solving for two 

key variables, consumption by the planktonic and benthic invertebrate predators (Fig. 7a). If we 

assume that all of the invertebrate carnivores are eaten by pelagic and demersal fish, then the 

quantity of consumption by invertebrate predators is calculated by 

 

Fish consumption = (Input – Predator consumption) + Predator production  
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Invertebrate predator production/consumption = 0.2 (section 2), then 

 

  Predator consumption = (Input– Fish consumption)/0.8. (4) 

 

This gives values for the planktonic and benthic predator consumption with the constraint that 

 

  Predator consumption ≤ Input .    (5) 

 

This constraint assumes there are no significant losses of invertebrate predators to sources other 

than fish consumption. 

 

This comparison of results from the upper and lower web applies directly to the last decade when 

the data for fish consumption during 1993-2002, overlap with the years of the GLOBEC surveys 

1995-1999. Solutions for the last decade (1993-2002) were found for both plankton and benthos 

(Figs. 7b, 7c). We then used the GLOBEC production values for the lower web to search for 

solutions for the fish food requirements for the three earlier decades.  

 

In five of the six cases for the earlier decades, all of the production input to the upper food 

web is consumed either directly by fish or indirectly through invertebrate carnivores (Fig. 7b, c).  

For the plankton in the first decade, the fish food requirement is so small that there is no exact 

solution that satisfies constraint (5). The best fit for this decade is that all food intake by the 

recruited fish is in the form of predatory plankton, but even then the plankton consumption is 
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less than the production in the last decade. For the benthos, the food intake of the fish can be 

balanced by the benthic production in all four decades. However, in the first decade (1963-1972), 

the predator intake needs to be 34% greater than that of the fourth decade, indicating again a 

significant decrease in the benthic fish requirement in that decade (Fig 7c). The combined fish 

food requirement for plankton and benthos is 41% of that in the fourth decade but there is a 

much greater reduction in the plankton requirement compared to the benthos.  

 

4.4.  The decade 1963-1972 

 

 We need to consider possible causes for differences in the first decade when planktonic 

food appears to be significantly greater than required by fish. However these budgets for the 

lower web are based on NO3 data from the 1980s and 1990s. There are no nutrient observations 

for Georges Bank for the years 1960-1970, but there is a repeated section on the Central Scotian 

Shelf that documents an increase in the influence of the Labrador Current from 1960-1970 

(Petrie and Yeats, 2000) (Fig.8). The interannual-to-decadal variability of the physical 

environment on the Scotian Shelf, Gulf of Maine and Georges Bank is largely determined by the 

fluctuating strength and position of the cold Labrador Current (Pershing et al., 2001). Its 

signature is evident in the temperature at 100-150 m (Loder et al., 2001). There was a marked 

cold period during 1960-1970, followed by 25 warm years and then a brief cold spell in 1997-

1998 (Thomas et al., 2003) (Fig. 8b). The cold period is also seen in bottom temperatures 

measured on Georges Bank (Fig. 8c). In the cold years, NO3 concentration was significantly 

lower than in warm years by as much as 5-10 mM.m-3 (Fig. 8a).   
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There are no continuous data for plankton covering the four decades. The MARMAP data 

(Sherman et al, 2002) from 1977 to 2000 show little change during that period.  However, data 

collected with the Continuous Plankton Recorder in the Gulf of Maine show lower 

phytoplankton color (Zwanenburg et al., 2002) and lower zooplankton biomass (Jossi & Goulet, 

1993) for the period 1965-1975 compared with succeeding decades, and there are some 

decreases in the two dominant mesozooplankton biomass components, Calanus finmarchicus 

and Pseudocalanus spp. These sequences confirm the indications from the food web fluxes, that 

the period 1963-1972 had significantly lower primary production that propagated through higher 

trophic levels to overall fish production and may be linked to larger spatial patterns such as the 

North Atlantic Oscillation (Pershing et al., 2001). 

 

If we assume that the lower fish food requirements in the first decade were due to lower 

NO3 input, then for this linearly based lower food web, (equation 3) we would expect export to 

the higher trophic levels to change proportionately within and between the benthic and 

planktonic components. We can use equation (4) to apportion this production between fish and 

invertebrate carnivores. In this “low-N” scenario we assume that the same proportions of 

invertebrate to vertebrate carnivores found in the fourth decade would be achieved in the first 

decade (Fig. 7). This requires 28% of the plankton and 71% of the benthos fluxes compared with 

the GLOBEC values. These very different percentages imply that invariant web proportionality 

does not hold under varying physical regimes. Some web parameters would have to be changed 

in a low-N regime, but reduced nutrient input could account for the lower fish food requirements 

in the first decade. 
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    5. Comparisons with Observations 

 

The nutrient data on new and recycled production, and the data on fish biomass and diet 

are used as drivers for the food web and are not appropriate to test the output. For this we use the 

available data on the intermediate trophic levels. 

 

5.1. Phytoplankton size categories 

A critical assumption in the web calculations is that the fraction of chlorophyll in large 

cells (Table 1, O’Reilly et al., 1987) provides a measure of the fraction of primary production 

grazed by mesozooplankton. A comparison of the percentage of primary production grazed by 

copepods in April, July and October, 1978 (Dagg and Turner, 1982) with the percentage of total 

chlorophyll as large cells (Table 8) shows considerable overlap except for the Mixed region. 

             

5.2.Microzooplankton  

Microplankton and nanoplankton are defined operationally on the basis of size (Sieburth 

et al., 1978). Both categories include autotrophs and heterotrophs as well as mixotrophic forms.  

The autotroph standing stock is partitioned into small (<20μm) and large (>20μm) 

phytoplankton. All heterotrophs and mixotrophs <200μm are assigned to a single box, defined 

inclusively as microzooplankton. There are no published seasonal or synoptic surveys of 

microzooplankton on Georges Bank. Here, we use in situ data for standing stocks of 

nanoplankton, microplankton and chlorophyll-a collected during five cruises to Georges Bank 

between January and June 1995 (D.J.  Gifford and M.E. Sieracki, unpublished).  Seawater was 
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collected from rosette-mounted 10-l teflon-lined Go-Flo bottles.  At stations where the water 

column was well-mixed, samples were collected at the top, middle and bottom of the water 

column.  At stations where the water column was stratified, water was collected above, within 

and below the pycnocline and at other targeted depths. Separate samples were collected for 

analysis of chlorophyll a, nanoplankton and microplankton.  Chlorophyll-a was analyzed by 

fluorometry according to Knap et al. (1996). Nanoplankton samples were processed after 

Sieracki et al. (1993) and carbon content was calculated according to Verity et al. (1992). 

Microplankton samples were processed and analyzed according to Gifford and Caron (2000) and 

carbon content was calculated according to Putt and Stoecker (1989) for ciliates and Lessard 

(1991) for heterotrophic dinoflagellates. 

 

 Inspection of the microzooplankton data showed increases in standing stocks from winter 

to spring (there are no summer data), but no detectable spatial pattern over the three Bank 

regions. Thus the data were grouped into winter and spring categories, with each group 

containing 15 and 10 values respectively. The median values (± standard deviation) for winter 

and spring were 14 (±6) and 40 (±8) mg C.m-3, after removing anomalous outliers. To convert 

the standing stocks to energy flow, we assumed that intake (C:B) is in the range 0.5 (winter) to 

1.0 (summer) d-1 over 40m depth (Table 3). Flux through the microzooplankton in winter is then 

0.28 (±0.12) g C.m-2d-1 and in spring is 1.20  (±0.24) g C.m-2.d-1, based on a C:B ratio of 0.75). 

Estimated fluxes through the microzooplankton from the lower web budgets (Table 9) agree with 

observed winter values but are about 75% of observed spring fluxes. Given the variability of the 

measurements and uncertainty of conversion factors, this comparison is not unsatisfactory.  
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5.3 Mesozooplankton 

 In the Georges Bank GLOBEC field program, mesozooplankton were collected with a 1 

m2 MOCNESS equipped with 0.15-mm nets that sampled the copepodid stages of the dominant 

species quantitatively (Wiebe et al, 2003). A pump system with 0.035 to 0.050 mm nets was used 

to sample nauplii (Durbin et al., 2000). Analyses for dry weights were made at 12 stations on the 

Bank at approximately monthly intervals between January and June 1995-1999. 10 - 20 

mesozooplankton samples were collected each month in each region of the Bank and are used 

here to calculate monthly mean biomasses (± standard deviations) (Fig. 9). 

 

The estimated mesozooplankton fluxes from the budget calculations were converted to 

carbon biomass using the Hirst and Lampitt (1998) formulae. The C:B ratios are temperature and 

size dependent. Calanus finmarchicus and Pseudocalanus spp.  are dominant on the Bank during 

the GLOBEC surveys. We take their weights, 70 and 7 μg C respectively (Lynch et al., 2001), to 

represent the principal size categories of mesozooplankton. A range of values is given in Table 1. 

The general pattern of species distribution is that Pseudocalanus spp. are dominant on the crest 

and C. finmarchicus near the shelf edge (Lynch et al., 2001; Meise and O’Reilly, 1996). We 

formalize this by assigning “small” (7 μg C) mesozooplankton to the Mixed region and “large” 

(70 μg C) mesozooplanktonto the Stratified region, with equal weights of the two species in the 

Transition zone.  These averages for the three seasons are superimposed on the graphs of 

observed zooplankton biomass (Fig. 9).  The estimated biomasses are within the broad limits 

given by the data, except for spring in the Mixed region, where the estimated spring bloom is too 

high and the observed value is closer to the summer estimate. 
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The zooplankton biomass estimates from the lower food web can also be compared with 

the MARMAP average data for 1977-1999 (Sherman et al., 2002). The MARMAP data 

(displacement volume . 100 m-3) were converted to g C . 50 m-3 using the conversion factor: 1.0 

cc displacement volume = 0.1 g C (Harris et al., 2000). The MARMAP averages for the three 

seasons are 1.2, 3.8 and 2.0 g . 50 m-3. The ranges of estimated values from the budget 

calculations are 0.5-1.1, 3.2-5.6 and 1.3-2.6 g . 50m-3 for winter spring and summer, respectively 

Because the MARMAP samples were collected with a 330 µm net that undersampled smaller 

mesozooplankton life history stages, they are likely to underestimate total mesozooplankton 

biomass.  Although the MARMAP data differ in detail from the web calculations, the main 

trends in the data are similar.  

 

5.4. Carnivorous zooplankton 

 As part of the GLOBEC Georges Bank sampling program, four categories of pelagic 

invertebrate predators were collected for the period January to June, 1995-1999: chaetognaths, 

ctenophores, predatory copepods and hydroids. Rates of their intake of mesozooplankton prey 

were derived from these data by applying available estimates of consumption. 

 

 Chaetognaths. Ingestion by chaetognaths on Georges Bank ranges from 2-8% body 

weight.d-1 (Davis, 1984). From analysis of gut contents of  Sagitta elegans during 1994-1995 

(B.K. Sullivan, unpublished) we use a daily feeding rate of 4% body weight.d-1.  Applying this 

feeding rate to chaetognath abundances in 1995-1999 gives average consumption rates of 1.36, 

1.04, 1.80, 0.57, 1.88 and 3.17 mg C m-2.d-1 in the months of January, February, March, April, 
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May and June, respectively. Using averages of 1.19 for six months of “winter” and 2.52 for 

“spring” plus “summer”, consumption in winter is 214 mg C.m-2, consumption in Spring/summer 

is 454 mg C.m-2, and annual food intake by the chaetognaths is 0.7 g C m-2.yr-1. 

 

 Ctenophores. Estimates of ctenophore feeding rates are based on experiments with 

Pleurobrachia spp. (Davis, 1984). When combined with abundance data, intake rates are, 5.3, 

6.9, 2.1, 5.9, 3.1 and 4.9 mg C m-2.d-1 in January, February, March, April, May and June, 

respectively. The average intake is 4.7 mg C m-2.d-1 with no seasonal pattern. Application of this 

value over the entire year gives an annual intake of 1.6 g C m-2.yr-1. 

 

 Predatory copepods. The “predatory” copepods, principally Centropages typicus, feed on 

microzooplankton, and on copepod eggs and nauplii. Here, only the latter components are 

“predatory”; feeding on microzooplankton is subsumed in the mesozooplankton. From data on 

copepod nauplii densities (E.G. Durbin, unpublished; see also Durbin et al., 2000; Lynch et al., 

2001) the mean values (ranges) for winter (Jan-April) and spring (May-June) are 2.1 μg C.l-1  

(1.2 –2.9) and 4.5 μg C.l-1 (2.6-6.5), respectively. Combining these values with a clearance rate 

of 0.2 l predator-1.d-1 (Sell et al., 2001), and a carbon weight for the predator of 7 μg C (Davis, 

1984), the predation rates are 0.06 and 0.13 mg C.predator C-1.day-1 for winter and spring, 

respectively. The 5-year average densities of predatory copepods (E.G. Durbin, unpublished; 

B.K. Sullivan, unpublished) were 0.07 and 0.27 g C.m-2 for winter (January–April) and spring 

(May-June), respectively. Assuming that each value applies to six months, yearly predation is 7.0 

g C.m-2. 
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 Hydroids. The pelagic phase of hydroids (dominated by Clytia spp.) on Georges Bank is 

erratic in timing, but they appear to be abundant on the Bank crest for approximately two months 

(Concelman et al., 2001). The maximum annual population densities, averaged over the two 

months of hydroid occurrence were 0.25, 0.45, 0.12, 0.30 and 0.20 g C.m-2 in 1995, 1996, 1997, 

1998 and 1999, respectively (E.G. Durbin, unpublished; B.K. Sullivan, unpublished).  The 

average 5-year population size was 0.25 g C.m-2  (B.K. Sullivan, unpublished).    Hydroid growth 

rate at 8°C is 0.15 d-1 (B.K. Sullivan, unpublished). Assuming a transfer efficiency of 0.3, then 

food intake is ~ 0.5 d-1. The average population (0.24 g C.m-2) food requirement for 60 days is 

then equivalent to 7.2 g C m-2.yr-1. 

 

In summary, the total invertebrate predation rate on the mesozooplankton is on the order 

of 16.4 g C m-2.yr-1. Given the variability in the data and the uncertainties in assigning rates to 

summer and fall, the range could be at least ± 50% or 8.2-24.6 g C m-2.yr-1.   

 

To make a comparison with the calculations for the upper web, we assume that the 

pelagic invertebrate predators can out-compete the fish but the fish eat all of the predators. There 

is then 13.9 g C.m-2.yr-1 available for the fish. The intake required by the pelagic feeding fish for 

the last decade, when comparison is appropriate, is 12.2 g C.m-2.yr-1 (Fig. 8c). This is close 

because it is unlikely that carnivores such as gelatinous zooplankton would be totally consumed. 

These values indicate that predatory plankton are a critical competitor with fish in the 

consumption of mesozooplankton, in agreement with Davis (1984), who concluded that 

invertebrate predators are able to control copepod populations on Georges Bank. 
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5.5. Benthic Fauna  

 

Diet information has been compiled for 24 benthic species that are abundant on Georges 

Bank (Theroux & Wigley, 1998).  The suspension feeders filter microplankton (diatoms, 

flagellates and microzooplankton) and the deposit feeders consume organic matter on sediment 

grains.  The predators eat mainly deposit feeders, some fish eggs, juvenile fish, and small 

bivalves.  Scavengers eat a combination of deposit feeders and detritivores.  There are no 

herbivores feeding on macroalgae on Georges Bank.  As a first-order approximation, we assume 

that suspension-feeding benthos eat microplankton and deposit-feeding benthos eat detritus. 

 

  Benthic production on Georges Bank has been estimated with a variety of direct and 

indirect methods.  For a few cases in which the same stations have been sampled repetitively 

over time, the production of scallops (Hermsen et al., 2003), amphipods, and sand dollars has 

been estimated with the growth-increment method.  Hynes size-frequency method was used to 

estimate production from samples having size-frequency data but insufficient numbers to follow 

cohorts (Hermsen et al., 2003).  Steimle (1987) used literature values of P:B ratios to estimate 

benthic production on the Bank.  Total production based on the Theroux and Wigley (1998) 

samples is 102 kcal m-2.yr-1 with an overall P:B ratio of 1.2 (Table 10 ).  The same P:B ratios, 

applied to Michael et al.'s (1983) data from the southern flank give a total production of 92 

kcal.m-2.yr-1 and an overall P:B of 1.3. Applying the same P:B ratios as Steimle to the data from 

the Georges Bank Benthic Infauna Monitoring Program (Maciolek-Blake et al. 1985) resulted in 

a total production of 86 kcal.m-2.yr-1 and an overall P:B of 1.4.  In Hermsen et al.’s (2003) study 

a combination of direct and indirect methods was used to estimate benthic production at stations 
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on the northern edge of the Bank.  Total production ranged from 40 to 382 kcal.m-2.yr-1.  The 

highest value was attributable to high densities of sea scallops, with a P:B ratio of 0.33.  

 

 In summary, benthic production on Georges Bank ranges from 86 to 105 kcal.m-2.yr-1 

(Table 10). Although production has been estimated for different time periods, temporal 

comparisons are not possible, except at locations that have been sampled repeatedly over time.  

On the northern edge of the Bank, there has been a marked increase in benthic biomass within 

the area closed to fishing since 1994 (Hermsen et al., 2003).  Here, biomass and production are 

partitioned into suspension and deposit feeding benthos for inclusion in the energy budget (Table 

10).  The suspension feeders consist primarily of large bivalves with lower P:B ratios than the 

deposit feeders.  The deposit feeders likely include some carnivorous or omnivorous species, but 

it was not possible to separate these species in the aggregate data.  There was a wide range in the 

ratio of suspension-to-deposit feeders, but on average, suspension feeder biomass was               

54 kcal.m-2 and production was 36 kcal.m-2.yr-1, for a P:B ratio of 0.7.  Average deposit feeder 

biomass was 51 kcal.m-2 and production was 60 kcal.m-2.yr-1, for a P:B of 1.2. We take a ratio of  

11 kcal = 1 g C to obtain a total benthic production of 8.8 g C.m-2.yr-1 . 

 

Total macro-benthic production (deposit feeding plus suspension feeding) from the 

budget calculations is estimated as 10.5 g C.m-2.yr-1, in reasonable agreement with the average 

observed value of 8.8 g C.m-2yr-1. The calculated proportions of suspended and detritus feeders 

are within the observed range (Table 10).  

  . 
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      6. Discussion 

 

6.1 Results of analysis 

 

Our calculations agree broadly, but not in detail, with earlier energy budgets for Georges 

Bank (Cohen et al., 1982; Sissenwine et al, 1984; Cohen and Grosslein, 1987).  For example, 

Cohen and Grosslein (1987) estimated macrozooplankton production as 20.2 g C.m-2.yr-1, lower 

than our estimate of 27.0.  The estimates of exploitable fish production are also comparable, 

because these were calculated with the same P:B ratios.  Consumption by juvenile fish is less 

than was estimated by Sissenwine et al. (1984).  On the other hand, the high consumption of 

carnivorous zooplankton, including gelatinous forms, confirms their importance as pelagic 

predators (Davis, 1984).   The detailed and quantitative treatment of the lower food web is a 

major improvement over earlier energy budgets.  The recycling of nutrients through the 

microbial loop in combination with advective losses of zooplankton off the bank, explains why 

Georges Bank has high total primary production, yet comparatively low zooplankton production.     

 

 Solving the lower and upper food webs separately has the advantage that both can be 

modeled at appropriate space and time scales and with different approaches.  Starting with 

estimates of new and total production based on data from 1980-2000, linear steady-state budgets 

of the lower food web provide values for fluxes of micro- and mesoplankton, and for suspension 

and deposit feeding benthos.  Starting with data on fish populations and their diets over four 

decades, the upper food web calculates the fluxes of mesozooplankton and predatory 

zooplankton, and total benthos required for fish consumption. 
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 In the budgets for fluxes through the food web, we used the best estimates available in 

the literature for a large number of parameters, such as transfer efficiency and consumption–to-

biomass ratios, rather than explore the limits for some of the factors in individual applications. 

We restricted the choice of unknowns to three – detritus recycling, and planktonic and benthic 

carnivore consumption - because they apply to the critical trophic transfers on Georges Bank. 

Thus, we have a constrained comparison of the inputs at the top and bottom of the food web that 

determines possible solutions. This was preferable to a general use of data on the various 

planktonic and benthic components because, as described here, these would have had such wide 

upper and lower bounds that any solution, including the first decade, might have been 

acceptable. 

 

 The planktonic and benthic fluxes can be reconciled with the fish food requirements for 

the last three decades, and the estimated values of biomass of plankton and benthos fall within 

the wide range of variation of available observations. However for the first decade, 1963-72, the 

plankton requirements of the fish populations were significantly lower than the fluxes estimated 

for the succeeding three decades, and the benthic fish requirements were also lower than the later 

periods. Examination of the available physical, nutrient, and plankton data for the period 1960-

1975 suggests that decreased NO3 input during this decade resulted in significantly decreased 

plankton production. 

 

A year-by-year examination of this change shows that the ratio of benthic to total food 

requirement trends down fairly regularly over the four decades (Fig. 10). There are two types of 
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possible explanation for this trend: changes within the lower food web and changes in the 

fishery. The assumption of fixed linear relations between variable components in the food web 

(eq. 3) is an obvious over-simplification, particularly when there are marked changes in physical 

forcing and nutrient input. The intrusion of the cold Labrador Current could induce changes in 

the physical fluxes (Fig. 3) that would alter the retention of plankton on the Bank. Decreased 

new production could also affect the f-ratio, as calculated with data from the later decades.  

 

Ascribing observed changes in fish populations to physical environmental processes or to 

changes in fishing effort is a persistent problem. Usually both factors operate at the same time, as 

is certainly true for the four decades described here. There was major restructuring of fishing 

effort on Georges Bank after the 1976 extension of national jurisdiction, with a marked decrease 

in fishing for pelagic species but an increase in effort for preferred demersal stocks of cod, 

haddock, and flounder. Fishing depleted the principal groundfish stocks, but these changes 

appear to be balanced by alterations in other fish species (Fig. 5). High benthivore biomass in the 

1960s shifted to high piscivore biomass in the 1980s, and subsequently to high planktivore 

biomass in the late 1990s. Thus the shift to greater planktonic intake may be in part the result of 

changes in fishing pressure. An alternative, or additional, explanation is that the increased 

intensity of bottom trawling, combined with greater technology (NRC, 2002; Hermsen et al, 

2003) has depleted the suspension feeding epibenthos that are significant consumers of primary 

production as well as competitors with the plankton. 

 

 We have omitted some food web components, but they are unlikely to be sufficiently 

large to affect the food web balance.  Exploited invertebrates (e.g., lobsters & scallops) would 
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remove some of the benthic production.  For example, the harvest of scallops from the Canadian 

portion of Georges Bank was estimated at 1 g C.m-2.yr-1  (Horne et al., 1989).  Inclusion of these 

removals in the energy budget would require the benthivorous fish to consume more of the 

benthos directly, with less consumption of the carnivorous benthos (Fig. 10).  Top predators (i.e., 

marine mammals, sharks, turtles, and seabirds) were not included in the upper food web.  These 

predators have been estimated to consume about 1 g C.m-2.yr-1 from the pelagic food web (Cohen 

and Grosslein, 1987).  To the extent that the top predators eat pelagic fish, the feeding demands 

do not increase because the consumption of planktivorous fish was estimated directly from fish 

biomass.  To the extent that the top predators eat zooplankton, there is room in the budget for 

some of the zooplankton production to be diverted away from fish while still maintaining the 

food web in balance. 

 

6.2 Functional diversity.  

 

This food-web analysis requires that changes in community composition and species 

diversity must accommodate the overall fluxes. Increases in abundance of certain members of a 

guild necessitate decreases elsewhere. Such compensation has implications for attempts to 

reconstruct past conditions when, for example, single species such as cod were considerably 

more abundant (Kurlansky, 1997; Fogarty and Murawski, 1998).  Compensation also indicates 

likely constraints on attempts at recovery of particular stocks, when the overall balance requires 

reduction in abundance of other species. The marked fluctuations in abundance of both exploited 

and non-commercial species supports Tilman’s (1999) conclusion that the relation between 

diversity and stability is best expressed as “increases in diversity cause community stability to 
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increase but population stability to decrease” (our italics). As discussed above, our linear 

analysis describes the context for fish stocks, it does not determine the nature of the constraints, 

nor methods for their removal. To restore dominance of a single species, Tilman’s doctrine 

would require a decrease in the stability of the existing community. 

 

6.3 Climatic change.  

 

  Changes in the physical environment can affect the ecosystem in a variety of ways, 

through trends in static properties such as temperature or salinity, or in physical rate processes 

such as currents or vertical mixing. The effects may be direct through temperature tolerance or 

advective losses for particular species, or they can be indirect through nutrient fluxes up the food 

web. Our approach focuses on the latter, and the results indicate a probable connection between 

the shelf-edge Labrador Current and fluxes up through the food web to plankton consumption by 

fish. In turn there appears to be a connection between this current and a broader climatic index, 

the North Atlantic Oscillation linking these changes to larger spatial patterns (Pershing et al., 

2001). 

 

6.4 Trophic cascades. 

 

  There is considerable controversy over the definition (Polis et al., 2000) and 

determination (Shurin et al., 2002) of trophic cascades. The concept of aquatic cascades 

originated in studies of fresh water lakes (Carpenter and Kitchell, 1993) with alternating 

dominance of successive trophic levels from piscivorous fish to phytoplankton. Reviews of 
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open-sea marine systems suggest that there are partial cascades from fish to zooplankton but not 

to nutrients (Micheli, 1999; Richardson and Schoeman, 2004; Shurin et al., 2002; Worm and 

Myers, 2003). However individual studies range from no evidence of end-to-end cascades on 

Georges Bank (Sherman et al., 1998;) or the North Sea (Heath, 2005), to complete cascades from 

piscivores to nitrate on the north-east Scotian Shelf (Frank et al., 2005) based on correlations 

between components of the food web.  The problem in our analyses arises from the difficulty in 

defining integral trophic cascades. Nominal “piscivores” such as cod can consume as much 

benthos as fish. At the other end, variations in f-ratios are an index of the variable fraction of 

mesoplankton intake that is carnivorous or herbivorous. Fractional trophic levels are now 

accepted (Pauly et al., 1998), reflecting the diversity and openness of marine food webs and 

making it impractical to construct cascades based on quantitative flux data. 

 

6.5  Comparison with other regions 

 

 Heath (2005) performed an extensive analysis of the North Sea food web for the years 

1973-2000, using data on zooplankton and benthos biomass as input. Heath’s budgets start from 

mid-trophic levels and assume that inter-annual changes in plankton are forced by climatic 

factors. Heath's results indicate that the pelagic food web of the North Sea is controlled from the 

bottom-up. In contrast to Georges Bank, there has been no expansion of alternate fish species to 

fill the niche of commercial species depleted by overfishing. Instead, in the North Sea, fisheries 

for benthic invertebrates have developed. Heath’s general conclusions of bottom-up pelagic and 

top-down benthic control fits, to some extent, with the Georges Bank results. However, the 

expansion in benthic invertebrates in the North Sea and on the Scotian Shelf (Worm and Myers, 
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2003) was not observed on Georges Bank, where there appears to have been replacement by 

other benthic feeding fish.  

 

 On the Eastern Scotian Shelf, there have been various explanations for marked changes 

over the last four decades. Frank et al. (2005) describe a trophic cascade of alternate increasing 

and decreasing trends in abundance at decreasing trophic levels driven by the collapse in cod 

stocks and extending to NO3 concentration. The same group (Choi et al., 2004) propose a 

“transition to an alternate state” caused by “biomass removal and abiotic change”, and resulting 

in a hysteresis inhibiting return to an earlier state. These varying conclusions about the same 

geographic region are based on mainly visual correlations to support inferences for causation by 

physical factors (low nutrient supply), linear sequences (cascades), or non-linear regime shifts. It 

should be noted that there are significant differences between the Eastern and Western Scotian 

Shelves (Zwanenburg et al., 2002). The former is under the influence of the St Lawrence River 

outflow, whereas the latter is influenced primarily by the Labrador Current. 

 

 There are similarities and differences among Georges Bank, the North Sea and the 

Scotian Shelf in their physical, chemical and ecological regimes. Any general theories for the 

dynamics of shelf ecosystems will need to account for such features. There are also differences 

in the sequences of fishing effort, but the most prominent feature–the depletion of cod stocks–is 

remarkably similar for the three ecosystems. The North Atlantic Oscillation may affect the three 

regions in different ways, but could impose similar periodicities. As a start, there are striking 

differences in the bottom topography and physical oceanography of the regions. As discussed in 

this study, the distribution of different regimes of vertical mixing–Mixed, Transition and 
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Stratified—plays a critical role in the assessment of the productivity of Georges Bank. The 

episodically mixed Transition domain forms about half of Georges Bank, whereas in the North 

Sea (Pingree et al., 1978) it is only about 20%, and it appears to be significantly less on the 

Scotian Shelf (Iles and Sinclair, 1982). These proportions not only determine the new production 

but also its allocation to zooplankton, to detritus and especially to suspension feeding benthos 

such as scallops. These factors can account for the differing proportion in the yields of pelagic 

and demersal fish in the North Sea versus Georges Bank noted by Cohen et al. (1982) 

 

6.6  Management Issues.  

 

  The problems facing fisheries management are often posed as a choice between control 

of inter-annual to decadal changes in resource abundance by fishing effort (top-down) or by 

climatic change (bottom-up). A major conclusion of this study is that both can operate at the 

same time, but in different ways. In this context, the primary use of ecosystem budgets is to 

elucidate the problems in quantifying the interactions between external forcing and internal 

structure. This analysis for Georges Bank illustrates the difficulties but also demonstrates the 

necessity for end-to-end food web calculations. No single top-down or bottom-up process 

determines the observed patterns. As a result of selective fishing pressures, there may be 

decimation of top predators (Myers and Worm, 2003), but first-order piscivores can be replaced 

by other species, albeit less commercially attractive ones. Certain major fish components such as 

plankton feeders may be limited by the basic productivity of the ecosystem, while consumption 

of benthos in some systems has switched to invertebrate predators. Management of the diversity 

of fishery resources requires an approach based on a full appreciation of the entire food web. 
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Table 1. Turnover rates (C:B.d-1) of lower web components as a function of temperature. 
 
 
  

Fall/Winter 
 

Spring 
 

Summer 
 

Temperature 

 

6 

 

8 

 

15 

Phytoplankton 0.5 1.0 1.0 

Bacteria 0.5 1.0 1.0 

Microzooplankton 0.5 1.0 1.0 

Mesozooplankton 0.07-0.15 0.08-0.17 0.11-0.24 

Detritus 0.1 0.12 0.16 
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Table 2. Fractions of Georges Bank allocated to the three regions and seasons (see text Section 3). 
 
         
 

 Fall/Winter Spring Summer 
 

Stratified 

 

0.35 

 

0.52 

 

0.64 

Transition 0.57 0.39 0.28 

Mixed 0.08 0.08 0.08 
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Table 3. Estimates of Potential New Production (PNP), Integrated Total Primary Production 

(ITPP), f-ratio and chlorophyll > 20 µm for the three Bank regions and three seasons (from 

Bisagni, 2003; O’Reilly et al., 1978, Figure 21.5; see text Section 3.1 for details). 

 
Region   Fall/Winter   Spring   Summer  
 
 
  Potential New Production (mgC m-2.d-1) 

 
Stratified   180   306   242 

Transition  487      627   462 

Mixed   263   314   207 

Integrated Total Primary Production (mgC m-2.d-1) 
 

Stratified  598            1060   1095 

Transition  639            1352   1228 

Mixed   980            1189   1263 

   f-ratio 
 
Stratified           0.30   0.29   0.22 

Transition           0.76   0.46   0.38  

Mixed            0.27   0.26   0.16  

Fraction of chlorophyll > 20μm 
 
Stratified               0.55       0.87                          0.76  

Transition               0.39      0.58                 0.80          

Mixed                    0.30               0.44                     0.43          
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Table 4. Calculations of physical fluxes, F, for the three Bank regions. See section 3.2 of text and 

Fig. 4 for details. 

 
Region   Fall     Spring   Summer  
 
 
 

Surface NO3.m-3  (from Townsend & Thomas, 2002) 
 

Stratified  7.0    1.0    1.0 

Transition  5.0   1.0   1.0 

Mixed   2.5   0.0   0.0 

 
“Deep” NO3 .m-3 (from Horne et al., 1989) 

 
Stratified           10.0                 10.0            10.0 

Transition  8.0   8.0   8.0 

Mixed   5.0   5.0   5.0 

 
  Calculated values for daily exchange coefficient, F 
 
Stratified, FS          0.0299            0.0005           0.0085 

Transition, FT       0.0583             0.0186               0.0207 

Mixed, FM       0.0493             0.0097               0.0130 
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Table 5.  Parameter estimates for the lower food web. Values for Fall/Transition are corrected.   
 
 
Region   Fall     Spring   Summer  
 
 
  TE = Maximum growth/intake ratio (in the range 0.1-0.3) 

 
Stratified  0.10   0.30   0.26 

Transition  >0.3 (0.16)  0.30   0.30 

Mixed   0.10   0.30   0.24 

 
DR = Fraction of detritus recycled to NH4 (to satisfy constraints) 

 

Stratified  1.0   0.55   1.0 

Transition  0.0 (1.0)  0.75   0.65 

Mixed   1.0   0.40   1.0 
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Table 6.  Feeding guilds of 35 species of fish and squid on Georges Bank.  

 
       
Piscivores  Benthivores  Planktivores 
       
Spiny Dogfish  Smooth Dogfish  Atlantic Herring 

Winter Skate  Barndoor Skate  Butterfish  

Silver Hake  Little Skate  Acadian Redfish 

Atlantic Cod  Thorny Skate  Northern Sandlance 

Pollock   Haddock  Atlantic Mackerel 

White Hake  Red Hake  Windowpane 

Spottted Hake  American Plaice  Loligo squid 

Atlantic Halibut  Yellowtail Flounder  Illex squid  

Summer Flounder  Winter Flounder  Smooth Skate 

Bluefish   Witch Flounder    

Sea Raven  Longhorn Sculpin    

Goosefish  Cunner    

   Ocean Pout    

   Fourspot Flounder    
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Table 7. Average diet composition (proportion by weight) of the three fish guilds, weighted by 
the biomass of individual fish species. 
 
1963-1972 Benthivores Piscivores Planktivores 
Benthic fish 0.00 0.04 0.00 

Deposit feeding benthos 0.78 0.34 0.25 

Mesozooplankton 0.14 0.16 0.47 

Pelagic invertebrate predators 0.00 0.02 0.28 

Piscivorous fish 0.01 0.15 0.00 

Planktonic fish 0.00 0.17 0.00 

Suspension feeding benthos 0.08 0.11 0.00 

    

1973-1982    
Benthic fish 0.00 0.03 0.00 

Deposit feeding benthos 0.78 0.28 0.10 

Mesozooplankton 0.14 0.21 0.73 

Pelagic invertebrate predators 0.00 0.05 0.17 

Piscivorous fish 0.00 0.15 0.00 

Planktonic fish 0.00 0.18 0.00 

Suspension feeding benthos 0.07 0.09 0.00 

    
1983-1992    
Benthic fish 0.00 0.02 0.00 

Deposit feeding benthos 0.79 0.36 0.03 

Mesozooplankton 0.08 0.18 0.85 

 0.00 0.07 0.06 
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Table 7, continued 

 

Pelagic invertebrate predators 

Piscivorous fish 0.03 0.09 0.05 

Planktonic fish 0.01 0.17 0.01 

Suspension feeding benthos 0.09 0.11 0.00 

    
1993-2002    
Benthic fish 0.01 0.01 0.00 

Deposit feeding benthos 0.75 0.27 0.16 

Mesozooplankton 0.08 0.16 0.54 

Pelagic invertebrate predators 0.00 0.13 0.21 

Piscivorous fish 0.03 0.12 0.09 

Planktonic fish 0.07 0.21 0.01 

Suspension feeding benthos 0.07 0.10 0.00 
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 Table 8. Estimated percentage of primary production grazed by mesozooplankton: (A) mean 

(and range) from experiments with copepods (Dagg & Turner, 1982), and (B) mean (range) of 

large (>20µm) size fraction of chlorophyll, for the three regions on the Bank. 

 
  

Stratified 
 

  
Transition 

 
Mixed 

 

(A) 

 

48 (19-65) 

 

44 (14-75) 

 

9 (6-13) 

(B) 73 (55-76) 59 (39-80) 39 (30-43) 
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Table 9. Estimated consumption by microzooplankton in the lower food web (g C m-2.d-1) 
 
 
 
 
 Fall/Winter Spring Summer 

 
Stratified 0.21 0.95 0.92 

Transition 0.28 0.90 0.90 

Mixed 0.19 0.64 0.74 
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Table 10. Summary of benthic macrofaunal biomass and production on Georges Bank.  Data 

sources: 1: Steimle (1987), 2: Michael et al. (1983), 3: Maciolek-Blake et al. (1985): 4: Hermsen 

et al. (2003). 

 
 

 

Time Period 

 

 

Location 

 

Feeding 

mode 

 

Biomass 

(kcal.m-2) 

 

P:B 

 

Production 

(kcal.m-2.yr-2)

1960s Entire Bank1 Suspension 

Deposit 

Total 

19 

64 

83 

0.9 

1.5 

1.2 

16 

86 

        102 

1977 Southern Flank2 Suspension 

Deposit 

Total 

54 

20 

74 

1.0 

1.7 

1.3 

54 

39 

92 

1983 Southern Flank3 Suspension 

Deposit 

30 

31 

61 

1.0 

2.0 

1.4 

30 

56 

86 

1990s Northern Edge4 Suspension 

Deposit 

Total 

      113 

89 

      202 

0.5 

0.7 

0.5 

45 

60 

        105 
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 Figure captions 
 
Figure 1. Georges Bank food web. Rectangles are components of the web. Solid arrows represent 

fluxes. Dashed lines represent nutrient recycling, and dash-dot lines represent fish recruitment. 

Dotted lines leading to diamonds are physical losses. Ovals are inputs (NO3) and outputs 

(zooplankton feces) to higher trophic levels. Thick arrows denote export from the lower web. 

Circles indicate where upper and lower fluxes join.  For the lower web the arrows denote the 

flow of nutrients up to plankton and benthos.  For the upper web the arrows trace consumption 

by fish down to plankton and benthos, where the upper and lower webs meet.   

 

Figure 2.  a. Map of the Georges Bank region showing the depth contours. b. Spatial domains in 

Fall/Winter.  c. Spatial domains in Spring.  d. Spatial domains in summer. 

 

Figure 3. Representation of three mixing regimes on Georges Bank.  The fluxes, FM, FT, and FS, 

represent the loss rates estimated in Table 4. 

 

Figure 4. Fluxes in the lower food web integrated over the three Bank regions and three seasons 

to give outputs in g C. m-2.yr-1. The upper boxes represent the fluxes to the upper web. P is 

phytoplankton; M is microzooplankton; Z is mesozooplankton; SB is suspension feeding 

benthos; D is detritus; B is bacteria (recycling NH ). Sediment Feeding Benthos represents the 

transformation of fecal material to benthos (see text Section 3.3). 
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Figure 5. Time series of major fish species on Georges Bank.  Data are averages from the 

Northeast Fisheries Science Center spring and fall trawl surveys. 

 

Figure 6.  (a) Food requirements of recruited fish guilds.  (b) Fish consumption expressed in 

terms of prey groups. (a) and (b) differ because the nominal fish trophic groups eat all three prey 

groups (Table 8).  (c) Food requirements of all fish (including pre-recruits) in plankton and 

benthos equivalents. 

 

Figure 7. Matching the output from the lower food web with the requirements of the fish 

communities. (a) Upper food web simplified to show direct consumption of benthos and 

plankton by fish and indirect consumption through invertebrate carnivores. (b) Zooplankton 

production of 27.0 g C.m-2.yr-1 is matched for the last three decades with varying abundance of 

invertebrate pelagic predators,  but no match is possible for the first decade. (c) Benthic 

production of 10.5 g C.m-2.yr-1 is matched for all four stanzas but with nearly double the 

apparent abundance of invertebrate benthic predators in the first decade.  The “low nitrate” 

scenario shows that with reduced NO3 input in the 1963-1972 decade, fish consumption can 

balance production from the lower food web. 

 

Figure 8. Changes in (a) NO3 and (b) temperature at 150 m on the edge of the Scotian Shelf, as 

indicators of the cold Labrador current that flowed south to Georges Bank in the 1960s. (c) 

Bottom temperature anomalies on Georges Bank suggest that the same cold water mass was 

present in the 1960s. Adapted from Petrie & Yeats (2000) with temperature data from the 

National Marine Fisheries Service. 
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Figure 9. Mean and standard deviations of GLOBEC mesozooplankton biomass data for the 

three Bank regions with the values calculated for the three seasons from the lower food web 

superimposed as dashed lines.  

 

Figure 10. (a) Year-by-year estimates of plankton and benthos food requirements by the Georges 

Bank fish stocks. (b) The benthos component as a fraction of the total food requirement. 
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