10 research outputs found

    Earthy bride

    Full text link
    There are nearly 2.5 million couples getting married in the United States each year (Harrison, 2008, pg. xi). That breaks down to more than 6,300 weddings in a single day. The average wedding in the United States “produces 63 tones of CO2 and 400-600 pounds of trash” and therefore, newlyweds are creating over 3,500,000 pounds of trash in a single at their weddings (Harrison, 2009, ¶ 2)! The green movement is on the rise and wedding industry needs to implement it to meet new demands. In order to do people need to be informed of the importance, benefits and savings of adopting a green wedding and implementing it into their lives. Earthy Bride is an eco-friendly resource online available committed to keeping the most up-to-date, useful tools available for those planning practical, stylish, eco-friendly weddings—and happily-ever-after too

    ICDP workshop on the Deep Drilling in the Turkana Basin Project:Exploring the link between environmental factors and hominin evolution over the past 4 Myr

    Get PDF
    Scientific drill cores provide unique windows into the processes of the past and present. In the dynamic tectonic, environmental, climatic, and ecological setting that is eastern Africa, records recovered through scientific drilling enable us to look at change through time in unprecedented ways. Cores from the East African Rift System can provide valuable information about the context in which hominins evolved in one of the key regions of hominin evolution over the past 4 Myr. The Deep Drilling in the Turkana Basin (DDTB) project seeks to explore the impact of several types of evolution (tectonic, climatic, biological) on ecosystems and environments. This includes addressing questions regarding the region’s complex and interrelated rifting and magmatic history, as well as understanding processes of sedimentation and associated hydrothermal systems within the East African Rift System. We seek to determine the relative impacts of tectonic and climatic evolution on eastern African ecosystems. We ask, what role (if any) did climate change play in the evolution of hominins? How can our understanding of past environmental change guide our planning for a future shaped by anthropogenic climate change? To organize the scientific community’s goals for deep coring in the Turkana Basin, we hosted a 4-day ICDP supported workshop in Nairobi, Kenya in July 2022. The team focused on how a 4 Myr sedimentary core from the Turkana Basin will uniquely address key scientific research objectives related to basin evolution, paleoclimate, paleoenvironment, and modern resources. Participants also discussed how DDTB could collaborate with community partners in the Turkana Basin, particularly around the themes of access to water and education. The team concluded that collecting the proposed Pliocene to modern record is best accomplished through a 2-phase drilling project with a land-based transect of four cores spanning the interval from 4 Ma to Middle/Late Pleistocene (<0.7 Ma) and a lake-based core targeting the interval from ~1 Ma to present. The second phase, while logistically more challenging due to the lack of drilling infrastructure currently on Lake Turkana, would revolutionize our understanding of a significant interval in the evolution and migration of Homo sapiens for a time period not currently accessible from the Kenyan part of the Turkana Basin. Collectively, the DDTB project will provide exceptional tectonic and climatic data directly associated with one of the world’s richest hominin fossil localities

    ICDP workshop on the Deep Drilling in the Turkana Basin Project:Exploring the link between environmental factors and hominin evolution over the past 4 Myr

    Get PDF
    Scientific drill cores provide unique windows into the processes of the past and present. In the dynamic tectonic, environmental, climatic, and ecological setting that is eastern Africa, records recovered through scientific drilling enable us to look at change through time in unprecedented ways. Cores from the East African Rift System can provide valuable information about the context in which hominins evolved in one of the key regions of hominin evolution over the past 4 Myr. The Deep Drilling in the Turkana Basin (DDTB) project seeks to explore the impact of several types of evolution (tectonic, climatic, biological) on ecosystems and environments. This includes addressing questions regarding the region’s complex and interrelated rifting and magmatic history, as well as understanding processes of sedimentation and associated hydrothermal systems within the East African Rift System. We seek to determine the relative impacts of tectonic and climatic evolution on eastern African ecosystems. We ask, what role (if any) did climate change play in the evolution of hominins? How can our understanding of past environmental change guide our planning for a future shaped by anthropogenic climate change? To organize the scientific community’s goals for deep coring in the Turkana Basin, we hosted a 4-day ICDP supported workshop in Nairobi, Kenya in July 2022. The team focused on how a 4 Myr sedimentary core from the Turkana Basin will uniquely address key scientific research objectives related to basin evolution, paleoclimate, paleoenvironment, and modern resources. Participants also discussed how DDTB could collaborate with community partners in the Turkana Basin, particularly around the themes of access to water and education. The team concluded that collecting the proposed Pliocene to modern record is best accomplished through a 2-phase drilling project with a land-based transect of four cores spanning the interval from 4 Ma to Middle/Late Pleistocene (<0.7 Ma) and a lake-based core targeting the interval from ~1 Ma to present. The second phase, while logistically more challenging due to the lack of drilling infrastructure currently on Lake Turkana, would revolutionize our understanding of a significant interval in the evolution and migration of Homo sapiens for a time period not currently accessible from the Kenyan part of the Turkana Basin. Collectively, the DDTB project will provide exceptional tectonic and climatic data directly associated with one of the world’s richest hominin fossil localities

    Using multiple chronometers to establish a long, directly-dated lacustrine record:Constraining >600,000 years of environmental change at Chew Bahir, Ethiopia

    Get PDF
    Despite eastern Africa being a key location in the emergence of Homo sapiens and their subsequent dispersal out of Africa, there is a paucity of long, well-dated climate records in the region to contextualize this history. To address this issue, we dated a ∼293 m long composite sediment core from Chew Bahir, south Ethiopia, using three independent chronometers (radiocarbon, 40Ar/39Ar, and optically stimulated luminescence) combined with geochemical correlation to a known-age tephra. The site is located in a climatically sensitive region, and is close to Omo Kibish, the earliest documented Homo sapiens fossil site in eastern Africa, and to the proposed dispersal routes for H. sapiens out of Africa. The 30 ages generated by the various techniques are internally consistent, stratigraphically coherent, and span the full range of the core depth. A Bayesian age-depth model developed using these ages results in a chronology that forms one of the longest independently dated, high-resolution lacustrine sediment records from eastern Africa. The chronology illustrates that any record of environmental change preserved in the composite sediment core from Chew Bahir would span the entire timescale of modern human evolution and dispersal, encompassing the time period of the transition from Acheulean to Middle Stone Age (MSA), and subsequently to Later Stone Age (LSA) technology, making the core well-placed to address questions regarding environmental change and hominin evolutionary adaptation. The benefits to such studies of direct dating and the use of multiple independent chronometers are discussed. Highlights • Four independent dating methods applied to ∼293 m lake core from southern Ethiopia. • Reveals 620 ka high-resolution sedimentary record near key fossil hominin sites. • Mean accumulation rate of 0.47 mm/a comparable to other African lacustrine sediments. • Accumulation rate fell to 0.1 mm/a during MIS 2, likely due to reduced sediment supply. • Use of multiple independent chronometers is a powerful approach in lake settings

    Hydroclimate changes in eastern Africa over the past 200,000 years may have influenced early human dispersal

    Get PDF
    Abstract: Reconstructions of climatic and environmental conditions can contribute to current debates about the factors that influenced early human dispersal within and beyond Africa. Here we analyse a 200,000-year multi-proxy paleoclimate record from Chew Bahir, a tectonic lake basin in the southern Ethiopian rift. Our record reveals two modes of climate change, both associated temporally and regionally with a specific type of human behavior. The first is a long-term trend towards greater aridity between 200,000 and 60,000 years ago, modulated by precession-driven wet-dry cycles. Here, more favorable wetter environmental conditions may have facilitated long-range human expansion into new territory, while less favorable dry periods may have led to spatial constriction and isolation of local human populations. The second mode of climate change observed since 60,000 years ago mimics millennial to centennial-scale Dansgaard-Oeschger cycles and Heinrich events. We hypothesize that human populations may have responded to these shorter climate fluctuations with local dispersal between montane and lowland habitats

    Pleistocene climate variability in eastern Africa influenced hominin evolution

    Get PDF
    AbstractDespite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from ~620,000 to 275,000 years bp (episodes 1–6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7–9 (~275,000–60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10–12 (~60,000–10,000 years bp) could have facilitated the global dispersal of H. sapiens.</jats:p

    Biodiversity post-2020: Closing the gap between global targets and national-level implementation

    Get PDF
    National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change

    ICDP workshop on the Lake Tanganyika Scientific Drilling Project: a late Miocene–present record of climate, rifting, and ecosystem evolution from the world's oldest tropical lake

    Get PDF
    The Neogene and Quaternary are characterized by enormous changes in global climate and environments, including global cooling and the establishment of northern high-latitude glaciers. These changes reshaped global ecosystems, including the emergence of tropical dry forests and savannahs that are found in Africa today, which in turn may have influenced the evolution of humans and their ancestors. However, despite decades of research we lack long, continuous, well-resolved records of tropical climate, ecosystem changes, and surface processes necessary to understand their interactions and influences on evolutionary processes. Lake Tanganyika, Africa, contains the most continuous, long continental climate record from the mid-Miocene (∼10 Ma) to the present anywhere in the tropics and has long been recognized as a top-priority site for scientific drilling. The lake is surrounded by the Miombo woodlands, part of the largest dry tropical biome on Earth. Lake Tanganyika also harbors incredibly diverse endemic biota and an entirely unexplored deep microbial biosphere, and it provides textbook examples of rift segmentation, fault behavior, and associated surface processes. To evaluate the interdisciplinary scientific opportunities that an ICDP drilling program at Lake Tanganyika could offer, more than 70 scientists representing 12 countries and a variety of scientific disciplines met in Dar es Salaam, Tanzania, in June 2019. The team developed key research objectives in basin evolution, source-to-sink sedimentology, organismal evolution, geomicrobiology, paleoclimatology, paleolimnology, terrestrial paleoecology, paleoanthropology, and geochronology to be addressed through scientific drilling on Lake Tanganyika. They also identified drilling targets and strategies, logistical challenges, and education and capacity building programs to be carried out through the project. Participants concluded that a drilling program at Lake Tanganyika would produce the first continuous Miocene–present record from the tropics, transforming our understanding of global environmental change, the environmental context of human origins in Africa, and providing a detailed window into the dynamics, tempo and mode of biological diversification and adaptive radiations.© Author(s) 2020. This open access article is distributed under the Creative Commons Attribution 4.0 License

    Measurement of jet fragmentation in Pb+Pb and pppp collisions at sNN=2.76\sqrt{{s_\mathrm{NN}}} = 2.76 TeV with the ATLAS detector at the LHC

    Get PDF

    Pleistocene climate variability in eastern Africa influenced hominin evolution

    No full text
    Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens
    corecore