4,443 research outputs found

    QCD phase diagram and the critical point

    Full text link
    The recent progress in understanding the QCD phase diagram and the physics of the QCD critical point is reviewed.Comment: 18 pages, 11 figures, for proceedings of "Finite Density QCD at Nara", July 200

    Excited hadrons as a signal for quark-gluon plasma formation

    Full text link
    At the quark-hadron transition, when quarks get confined to hadrons, certain orbitally excited states, namely those which have excitation energies above the respective L=0L = 0 states of the same order as the transition temperature TcT_c, may form easily because of thermal velocities of quarks at the transition temperature. We propose that the ratio of multiplicities of such excited states to the respective L=0L = 0 states can serve as an almost model independent signal for the quark-gluon plasma formation in relativistic heavy-ion collisions. For example, the ratio R∗R^* of multiplicities of DSJ∗±(2317)(JP=0+)D_{SJ}^{*\pm}(2317)(J^P = 0^+) and DS∗±(2112)(JP=1−)D_S^{*\pm}(2112)(J^P = 1^-) when plotted with respect to the center of mass energy of the collision s\sqrt{s} (or vs. centrality/number of participants), should show a jump at the value of s\sqrt{s} beyond which the QGP formation occurs. This should happen irrespective of the shape of the overall plot of R∗R^* vs. s\sqrt{s}. Recent data from RHIC on Λ∗/Λ\Lambda^*/\Lambda vs. Npart_{part} for large values of Npart_{part} may be indicative of such a behavior, though there are large error bars. We give a list of several other such candidate hadronic states.Comment: 19 pages, RevTex, no figures, minor change

    Conformal Window of Gauge Theories with Four-Fermion Interactions and Ideal Walking

    Full text link
    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four-fermion interactions are neglected. The anomalous dimension of the mass increases beyond the unity value at the lower boundary of the new conformal window. We plot the new phase diagram which can be used, together with the information about the anomalous dimension, to propose ideal models of walking technicolor. We discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show that the simplest one family and minimal walking technicolor models are the archetypes of models of dynamical electroweak symmetry breaking. Our predictions can be verified via first principle lattice simulations.Comment: RevTeX4, 22 pages, 16 figure

    The equation of state at high temperatures from lattice QCD

    Get PDF
    We present results for the equation of state upto previously unreachable, high temperatures. Since the temperature range is quite large, a comparison with perturbation theory can be done directly.Comment: 7 pages, 5 figures, Lattice 200

    The nature of the finite temperature QCD transition as a function of the quark masses

    Get PDF
    The finite temperature QCD transition for physical quark masses is a crossover. For smaller quark masses a first-order phase transition is expected. Using Symanzik improved gauge and stout improved fermion action for 2+1 flavour staggered QCD we give estimates/bounds for the phase line separating the first-order region from the crossover one. The calculations are carried out on two different lattice spacings. Our conclusion for the critical mass is m0≲0.07⋅mphysm_0 \lesssim 0.07 \cdot m_{phys} for NT=4N_T=4 and m0≲0.12⋅mphysm_0 \lesssim 0.12 \cdot m_{phys} for NT=6N_T=6 lattices.Comment: Talk presented at the XXV International Symposium on Lattice Field Theory, July 30 - August 4 2007, Regensburg, Germany. 7 pages, 6 figure

    QCD phase diagram and charge fluctuations

    Get PDF
    We discuss the phase structure and fluctuations of conserved charges in two flavor QCD. The importance of the density fluctuations to probe the existence of the critical end point is summarized. The role of these fluctuations to identify the first order phase transition in the presence of spinodal phase separation is also discussed.Comment: 8 pages, 8 figures, plenary talk given at the 19th International Conference on Ultrarelativistic Nucleus-Nucleus Collisions: Quark Matter 2006 (QM 2006), Shanghai, China, 14-20 Nov 200

    Comparison of lunar rocks and meteorites: Implications to histories of the moon and parent meteorite bodies

    Get PDF
    A number of similarities between lunar and meteoritic rocks are reported and suggest that the comparison is essential for a clear understanding of meteorites as probes of the early history of the solar systems: (1) Monomict and polymict breccias occur in lunar rocks, as well as in achondritic and chondritic meteorites, having resulted from complex and repeated impact processes. (2) Chondrules are present in lunar, as well as in a few achondritic and most chondritic meteorites. It is pointed out that because chondrules may form in several different ways and in different environments, a distinction between the different modes of origin and an estimate of their relative abundance is important if their significance as sources of information on the early history of the solar system is to be clearly understood. (3) Lithic fragments are very useful in attempts to understand the pre- and post-impact history of lunar and meteoritic breccias. They vary from little modified (relative to the apparent original texture), to partly or completely melted and recrystallized lithic fragments

    The curvature of the QCD phase transition line

    Get PDF
    We determine the curvature of the phase transition line in the mu-T plane through an analysis of various observables, including the Polyakov loop, the quark number susceptibilities and the susceptibility of the chiral condensate. The second derivative of these quantities with respect to mu was calculated. The measurements were carried out on N_T = 4,6,8 and 10 lattices generated with a Symanzik improved gauge and stout-link improved 2+1 flavour staggered fermion action using physical quark masses.Comment: Talk presented at the XXVI International Symposium on Lattice Field Theory, July 14 - 19, 2008, Williamsburg, Virginia, USA. 7 pages, 6 figure

    Lattice SU(3) thermodynamics and the onset of perturbative behaviour

    Get PDF
    We present the equation of state (pressure, trace anomaly, energy density and entropy density) of the SU(3) gauge theory from lattice field theory in an unprecedented precision and temperature range. We control both finite size and cut-off effects. The studied temperature window (0.7...1000Tc0.7... 1000 T_c) stretches from the glueball dominated system into the perturbative regime, which allows us to discuss the range of validity of these approaches. From the critical couplings on fine lattices we get T_c/\Lambdamsbar=1.26(7) and use this ratio to express the perturbative free energy in TcT_c units. We also determine the preferred renormalization scale of the Hard Thermal Loop scheme and we fit the unknown g6g^6 order perturbative coefficient at extreme high temperatures T>100TcT>100T_c. We furthermore quantify the nonperturbative contribution to the trace anomaly using two simple functional forms.Comment: 7 pages, Contribution to the The XXVIII International Symposium on Lattice Field Theory; June 14 - 19, 2010, Villasimius, Sardinia, Ital
    • …
    corecore