We investigate the effects of four-fermion interactions on the phase diagram
of strongly interacting theories for any representation as function of the
number of colors and flavors. We show that the conformal window, for any
representation, shrinks with respect to the case in which the four-fermion
interactions are neglected. The anomalous dimension of the mass increases
beyond the unity value at the lower boundary of the new conformal window. We
plot the new phase diagram which can be used, together with the information
about the anomalous dimension, to propose ideal models of walking technicolor.
We discover that when the extended technicolor sector, responsible for giving
masses to the standard model fermions, is sufficiently strongly coupled the
technicolor theory, in isolation, must have an infrared fixed point for the
full model to be phenomenologically viable. Using the new phase diagram we show
that the simplest one family and minimal walking technicolor models are the
archetypes of models of dynamical electroweak symmetry breaking. Our
predictions can be verified via first principle lattice simulations.Comment: RevTeX4, 22 pages, 16 figure