140 research outputs found

    Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective.

    Get PDF
    AIMS: Long-term exposure of humans to air pollution enhances the risk of cardiovascular and respiratory diseases. A novel Global Exposure Mortality Model (GEMM) has been derived from many cohort studies, providing much-improved coverage of the exposure to fine particulate matter (PM2.5). We applied the GEMM to assess excess mortality attributable to ambient air pollution on a global scale and compare to other risk factors. METHODS AND RESULTS: We used a data-informed atmospheric model to calculate worldwide exposure to PM2.5 and ozone pollution, which was combined with the GEMM to estimate disease-specific excess mortality and loss of life expectancy (LLE) in 2015. Using this model, we investigated the effects of different pollution sources, distinguishing between natural (wildfires, aeolian dust) and anthropogenic emissions, including fossil fuel use. Global excess mortality from all ambient air pollution is estimated at 8.8 (7.11-10.41) million/year, with an LLE of 2.9 (2.3-3.5) years, being a factor of two higher than earlier estimates, and exceeding that of tobacco smoking. The global mean mortality rate of about 120 per 100 000 people/year is much exceeded in East Asia (196 per 100 000/year) and Europe (133 per 100 000/year). Without fossil fuel emissions, the global mean life expectancy would increase by 1.1 (0.9-1.2) years and 1.7 (1.4-2.0) years by removing all potentially controllable anthropogenic emissions. Because aeolian dust and wildfire emission control is impracticable, significant LLE is unavoidable. CONCLUSION: Ambient air pollution is one of the main global health risks, causing significant excess mortality and LLE, especially through cardiovascular diseases. It causes an LLE that rivals that of tobacco smoking. The global mean LLE from air pollution strongly exceeds that by violence (all forms together), i.e. by an order of magnitude (LLE being 2.9 and 0.3 years, respectively)

    Evaluation of near-surface groundwater aquifers through integrated geophysical and geodetic measurements

    Get PDF
    Abstract Extensive geophysical and geodetic measurements were carried out to evaluate the groundwater aquifer, trace the basement relief, as well as detect the igneous intrusions and structural elements (mainly faults) that affect the occurrence of groundwater in the study area. The fieldwork included resistivity sounding, a geomagnetic survey, and Global Positioning System measurements. The magnetic results showed the presence of a group of main faults in East-west trend at the western part of the area and major fault at the northern part of the area of NW-SW trend. The findings also showed the presence of two igneous rock intrusions located in the middle of the eastern part of the valley. Pronounced differences in the depths of basement rocks have been identified, ranging between 0 and 900 m from the surface. Both high horizontal movements and high shear strain rates have been found to be concentrated at the southeast of the study area and it was noted that high stress was accumulated along the main observed faults and at the main groundwater aquifers. The geoelectrical results confirmed the presence of two aquifers; a shallow aquifer (Quaternary aquifer) that narrows northwards and a Nubian sandstone aquifer, which considered the main aquifer. The Nubian sandstone aquifer carries groundwater in the region, which overlies the last geoelectric unit represented by the basement complex layer and geological structures affecting the potential availability of groundwater in the study area, as proved by the geomagnetic survey and stress accumulation

    Impact of mineral dust on cloud formation in a Saharan outflow region

    Get PDF
    We present a numerical modelling study investigating the impact of mineral dust on cloud formation over the Eastern Mediterranean for two case studies: (i) 25 September 2008 and (ii) 28/29 January 2003. In both cases dust plumes crossed the Mediterranean and interacted with clouds forming along frontal systems. For our investigation we used the fully online coupled model WRF-chem. <br><br> The results show that increased aerosol concentrations due to the presence of mineral dust can enhance the formation of ice crystals. This leads to slight shifts of the spatial and temporal precipitation patterns compared to scenarios where dust was not considered to act as ice nuclei. However, the total amount of precipitation did not change significantly. The only exception occurred when dust entered into an area of orographic ascent, causing glaciation of the clouds, leading to a local enhancement of rainfall. The impact of dust particles acting as giant cloud condensation nuclei on precipitation formation was found to be small. Based on our simulations the contribution of dust to the CCN population is potentially significant only for warm phase clouds. Nevertheless, the dust-induced differences in the microphysical structure of the clouds can contribute to a significant radiative forcing, which is important from a climate perspective

    Magmatic Evolution and Rare Metal Mineralization in Mount El-Sibai Peralkaline Granites, Central Eastern Desert, Egypt: Insights from Whole-Rock Geochemistry and Mineral Chemistry Data

    Get PDF
    The Ediacaran peralkaline granites, which were emplaced during the post-collisional tectonic extensional stage, have a limited occurrence in the northern tip of the Nubian Shield. In this contribution, we present new mineralogical and geochemical data of Mount El-Sibai granites from the Central Eastern Desert of Egypt. The aim is to discuss their crystallization condition, tectonic setting, and petrogenesis as well as the magmatic evolution of their associated mineralization. Mount El-Sibai consists of alkali-feldspar granites (AFGs) as a main rock unit with scattered and small occurrences of alkali-amphibole granites (AAGs) at the periphery. The AAG contain columbite, nioboaeschynite, zircon and thorite as important rare metal-bearing minerals. Geochemically, both of AFG and AAG exhibit a highly evolved nature with a typical peralkaline composition (A/CNK = 0.82–0.97) and formed in within-plate anorogenic setting associated with crustal extension and/or rifting. They are enriched in some LILEs (Rb, K, and Th) and HFSEs (Ta, Pb, Zr, and Y), but strongly depleted in Ba, Sr, P and Ti with pronounced negative Eu anomalies (Eu/Eu* = 0.07–0.34), consistent with an A-type granite geochemical signature. The calculated TZrn (774–878 °C) temperatures indicate that the magma was significantly hot, promoting the saturation of zircon. The texture and chemistry of minerals suggest that they were crystallized directly from a granitic magma and were later subject to late- to post-magmatic fluids. Both granitic types were most likely generated through partial melting of a juvenile crustal source followed by magmatic fractionation. The lithospheric delamination is the main mechanism which causes uplifting of the asthenospheric melts and hence provides enough heat for crustal melting. The produced parent magma was subjected to prolonged fractional crystallization to produce the different types of Mount El-Sibai granites at different shallow crustal levels. During magma fractionation, the post-magmatic fluids (especially fluorine) contribute significantly to the formation of rare metal mineralization within Mount El-Sibai granites

    The application of life cycle assessment in buildings: challenges, and directions for future research

    Get PDF
    Purpose This paper reviews the state-of-the art research in life cycle assessment (LCA) applied to buildings. It focuses on current research trends, and elaborates on gaps and directions for future research. Methods A systematic literature review was conducted to identify current research and applications of LCA in buildings. The proposed review methodology includes (i) identifying recent authoritative research publications using established search engines, (ii) screening and retaining relevant publications, and (iii) extracting relevant LCA applications for buildings and analyzing their underpinning research. Subsequently, several research gaps and limitations were identified, which have informed our proposed future research directions. Results and discussions This paper argues that humans can attenuate and positively control the impact of their buildings on the environment, and as such mitigate the effects of climate change. This can be achieved by a new generation of LCA methods and tools that are model based and continuously learn from real-time data, while informing effective operation and management strategies of buildings and districts. Therefore, the consideration of the time dimension in product system modeling is becoming essential to understand the resulting pollutant emissions and resource consumption. This time dimension is currently missing in life cycle inventory databases. A further combination of life cycle impact assessment (LCIA) models using time-dependent characterization factors can lead to more comprehensive and reliable LCA results. Conclusions and recommendations This paper promotes the concept of semantic-based dynamic (real-time) LCA, which addresses temporal and spatial variations in the local built and environmental ecosystem, and thus more effectively promotes a “cradle-to-grave-to-reincarnation” environmental sustainability capability. Furthermore, it is critical to leverage digital building resources (e.g., connected objects, semantic models, and artificial intelligence) to deliver accurate and reliable environmental assessments

    Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East

    Get PDF
    Observation‐based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half‐century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45°C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land‐use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change. The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean Virtually all socio‐economic sectors will be critically affected by the projected changes The Eastern Mediterranean and Middle East is warming almost two times faster than the global average and other inhabited parts of the world Climate projections indicate a future warming, strongest in summers. Precipitation will likely decrease, particularly in the Mediterranean Virtually all socio‐economic sectors will be critically affected by the projected change

    Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps

    Get PDF
    Landslides are prevalent in the Western Ghats, and the incidences that happened in 2021 in the Koottickal area of the Kottayam district (Western Ghats) resulted in the loss of 10 lives. The objectives of this study are to assess the landslide susceptibility of the high-range local self-governments (LSGs) in the Kottayam district using the analytical hierarchy process (AHP) and fuzzy-AHP (F-AHP) models and to compare the performance of existing landslide susceptible maps. This area never witnessed any massive landslides of this dimension, which warrants the necessity of relooking into the existing landslide-susceptible models. For AHP and F-AHP modeling, ten conditioning factors were selected: slope, soil texture, land use/land cover (LULC), geomorphology, road buffer, lithology, and satellite image-derived indices such as the normalized difference road landslide index (NDRLI), the normalized difference water index (NDWI), the normalized burn ratio (NBR), and the soil-adjusted vegetation index (SAVI). The landslide-susceptible zones were categorized into three: low, moderate, and high. The validation of the maps created using the receiver operating characteristic (ROC) technique ascertained the performances of the AHP, F-AHP, and TISSA maps as excellent, with an area under the ROC curve (AUC) value above 0.80, and the NCESS map as acceptable, with an AUC value above 0.70. Though the difference is negligible, the map prepared using the TISSA model has better performance (AUC = 0.889) than the F-AHP (AUC = 0.872), AHP (AUC = 0.867), and NCESS (AUC = 0.789) models. The validation of maps employing other matrices such as accuracy, mean absolute error (MAE), and root mean square error (RMSE) also confirmed that the TISSA model (0.869, 0.226, and 0.122, respectively) has better performance, followed by the F-AHP (0.856, 0.243, and 0.147, respectively), AHP (0.855, 0.249, and 0.159, respectively), and NCESS (0.770, 0.309, and 0.177, respectively) models. The most landslide-inducing factors in this area that were identified through this study are slope, soil texture, LULC, geomorphology, and NDRLI. Koottickal, Poonjar-Thekkekara, Moonnilavu, Thalanad, and Koruthodu are the LSGs that are highly susceptible to landslides. The identification of landslide-susceptible areas using diversified techniques will aid decision-makers in identifying critical infrastructure at risk and alternate routes for emergency evacuation of people to safer terrain during an exigency

    Climate Change and Weather Extremes in the Eastern Mediterranean and Middle East

    Get PDF
    Observation-based and modeling studies have identified the Eastern Mediterranean and Middle East (EMME) region as a prominent climate change hotspot. While several initiatives have addressed the impacts of climate change in parts of the EMME, here we present an updated assessment, covering a wide range of timescales, phenomena and future pathways. Our assessment is based on a revised analysis of recent observations and projections and an extensive overview of the recent scientific literature on the causes and effects of regional climate change. Greenhouse gas emissions in the EMME are growing rapidly, surpassing those of the European Union, hence contributing significantly to climate change. Over the past half-century and especially during recent decades, the EMME has warmed significantly faster than other inhabited regions. At the same time, changes in the hydrological cycle have become evident. The observed recent temperature increase of about 0.45 degrees C per decade is projected to continue, although strong global greenhouse gas emission reductions could moderate this trend. In addition to projected changes in mean climate conditions, we call attention to extreme weather events with potentially disruptive societal impacts. These include the strongly increasing severity and duration of heatwaves, droughts and dust storms, as well as torrential rain events that can trigger flash floods. Our review is complemented by a discussion of atmospheric pollution and land-use change in the region, including urbanization, desertification and forest fires. Finally, we identify sectors that may be critically affected and formulate adaptation and research recommendations toward greater resilience of the EMME region to climate change.Peer reviewe

    Spatial Prediction of Groundwater Withdrawal Potential Using Shallow, Hybrid, and Deep Learning Algorithms in the Toudgha Oasis, Southeast Morocco

    Full text link
    peer reviewedWater availability is a key factor in territorial sustainable development. Moreover, groundwater constitutes the survival element of human life and ecosystems in arid oasis areas. Therefore, groundwater potential (GWP) identification represents a crucial step for its management and sustainable development. This study aimed to map the GWP using ten algorithms, i.e., shallow models comprising: multilayer perceptron, k-nearest neighbor, decision tree, and support vector machine algorithms; hybrid models comprising: voting, random forest, adaptive boosting, gradient boosting (GraB), and extreme gradient boosting; and the deep learning neural network. The GWP inventory map was prepared using 884 binary data, with “1” indicating a high GWP and “0” indicating an extremely low GWP. Twenty-three GWP-influencing factors have been classified into numerical data using the frequency ration method. Afterwards, they were selected based on their importance and multi-collinearity tests. The predicted GWP maps show that, on average, only 11% of the total area was predicted as a very high GWP zone and 17% and 51% were estimated as low and very low GWP zones, respectively. The performance analyses demonstrate that the applied algorithms have satisfied the validation standards for both training and validation tests with an average area under curve of 0.89 for the receiver operating characteristic. Furthermore, the models’ prioritization has selected the GraB model as the outperforming algorithm for GWP mapping. This study provides decision support tools for sustainable development in an oasis area
    corecore