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Abstract: Landslides are prevalent in the Western Ghats, and the incidences that happened in
2021 in the Koottickal area of the Kottayam district (Western Ghats) resulted in the loss of 10 lives.
The objectives of this study are to assess the landslide susceptibility of the high-range local self-
governments (LSGs) in the Kottayam district using the analytical hierarchy process (AHP) and
fuzzy-AHP (F-AHP) models and to compare the performance of existing landslide susceptible maps.
This area never witnessed any massive landslides of this dimension, which warrants the necessity
of relooking into the existing landslide-susceptible models. For AHP and F-AHP modeling, ten
conditioning factors were selected: slope, soil texture, land use/land cover (LULC), geomorphology,
road buffer, lithology, and satellite image-derived indices such as the normalized difference road
landslide index (NDRLI), the normalized difference water index (NDWI), the normalized burn
ratio (NBR), and the soil-adjusted vegetation index (SAVI). The landslide-susceptible zones were
categorized into three: low, moderate, and high. The validation of the maps created using the receiver
operating characteristic (ROC) technique ascertained the performances of the AHP, F-AHP, and TISSA
maps as excellent, with an area under the ROC curve (AUC) value above 0.80, and the NCESS map
as acceptable, with an AUC value above 0.70. Though the difference is negligible, the map prepared
using the TISSA model has better performance (AUC = 0.889) than the F-AHP (AUC = 0.872), AHP
(AUC = 0.867), and NCESS (AUC = 0.789) models. The validation of maps employing other matrices
such as accuracy, mean absolute error (MAE), and root mean square error (RMSE) also confirmed
that the TISSA model (0.869, 0.226, and 0.122, respectively) has better performance, followed by
the F-AHP (0.856, 0.243, and 0.147, respectively), AHP (0.855, 0.249, and 0.159, respectively), and
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NCESS (0.770, 0.309, and 0.177, respectively) models. The most landslide-inducing factors in this
area that were identified through this study are slope, soil texture, LULC, geomorphology, and
NDRLI. Koottickal, Poonjar-Thekkekara, Moonnilavu, Thalanad, and Koruthodu are the LSGs that
are highly susceptible to landslides. The identification of landslide-susceptible areas using diversified
techniques will aid decision-makers in identifying critical infrastructure at risk and alternate routes
for emergency evacuation of people to safer terrain during an exigency.

Keywords: AHP; F-AHP; GIS-TISSA; Koottickal disaster; landslides; NCESS model

1. Introduction

Landslides are one of the most destructive disasters occurring worldwide, with an esti-
mated loss of USD 20 billion [1] and causing more than 4000 deaths annually worldwide [2].
The recent global dataset of landslide fatalities [2] confirmed 55,997 deaths (from 4862
distinct occurrences) between January 2004 and December 2016. According to Li et al. [3],
a total of 9223 landslides have been recorded worldwide between 2000 and 2020. Froude
and Petley [2] reported that 75% of the landslides occurred in Asia and listed India as the
country with the highest number of incidences. Additionally, Broeckx et al. [4] reported
that every year, landslides mobilize roughly 56 billion m3 of hillslope material, of which
Asia accounts for 68% (38 billion m3) and the Central and Southeast Asian mountains for
50% (28 billion m3). The Himalayas, the Western Ghats, and the Eastern Ghats of India were
listed as the most landslide-prone regions by the National Disaster Management Authority
of India [5].

In Kerala’s Western Ghats region, landslides are the most prevalent hazard, which is
temporally restricted to the monsoon season. In the year 2018, a total of 4728 landslides
occurred in Kerala [6,7]. The catastrophic landslide disasters that occurred in Kerala in the
recent past include Puthumala (which resulted in the deaths of 17 people), Kavalappara
(which killed 59 people) in the year 2019 [8], and the Pettimudi disaster (which killed 70 peo-
ple) in the year 2020 [9]. Two such major landslides that were reported on 16 October 2021,
were in the Koottickal village of the Kottayam district (Figure 1). These landslides resulted
in the deaths of ten people (four at Plappally and six at Kavali) [10]. Such catastrophic
landslides demand the necessity of relooking into the existing landslide susceptibility map
and warrant additional models if required. This will help the government agencies that
deal with landslide hazards find the elements at risk and also help minimize the effects of
imminent landslides. Thus, this study proposed two models, namely the AHP and F-AHP,
and compared the results with existing landslide-susceptibility maps of Kerala, namely the
GIS Tool for Infinite Slope Stability Analysis (GIS-TISSA) map [11,12] and the map created
by the National Centre for Earth Science Studies (NCESS) [13].

Worldwide, researchers employed methods such as the AHP [14,15], F-AHP [15],
fuzzy logic [16], frequency ratio [17], analytical network process [18], FROC [19], and
Mora–Vahrson–Mora (MVM) [20,21] for the mapping of landslide-susceptible zones. Re-
searchers also applied artificial intelligence (AI)/machine learning (ML) models such as
support vector machine (SVM) [22–24], Naïve Bayes (NB) [25–27], decision tree [28–30],
K-nearest neighbor [31,32], random forest (RF) [33,34], adaptive neuro-fuzzy inference
system (ANFIS) [35], convolutional neural network (CNN) [36–38], artificial neural net-
work [39,40], logistic regression [41–43], support vector regression [44,45], recurrent neural
network [36,37], Adaptive Boosting [46], extreme gradient boosting [35], Random Subspace
(RSS) [47], Reduced Error Pruning Tree (REPTree) [48], etc., for landslide susceptibility mod-
eling. The mixed ensemble models of ML techniques such as multi-layer perceptron [49],
ANFIS [50], genetic algorithm [51], RSS [52], Credal Decision Tree [53], boosted regression
tree [54], SVM [55], RF [56,57], REPTree [58], deep learning neural network [59], Multi-layer
Perceptron Neural Network Classifier [60], NB [61], logistic model tree [62], Bagging [63],
CNN [64], and Particle Swarm Optimization [65] have also been employed for landslide
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susceptibility modeling. The effectiveness and efficiency of an ML solution are determined
by the quality and type of data as well as the performance of the learning algorithms [66].
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Figure 1. The Kavali landslide resulted in the demolishment of one house and the death of six people.

Amidst the plethora of models available, we preferred the AHP and F-AHP, as the
AHP simplifies complex issues into specific sub-issues using pair comparisons, and the
factors are prioritized once the hierarchical structure is constructed [67]. Because there are
just two options to evaluate, the decision-maker can only prioritize those that are being
compared [67]. The F-AHP is used to solve the AHP’s inability to handle imprecision
and subjectivity in assessments [68]. In addition, the AHP and F-AHP will provide better
results in data-scarce conditions when compared to ML methods [69,70]. Hence, the AHP
and F-AHP models are suitable when a large number of landslides are not available to
train and validate the results. Abdi et al. [71] and Akshaya et al. [15] employed both the
AHP and F-AHP models for demarcating landslide-susceptible zones and found both
models effective. Furthermore, the use of the AHP and F-AHP on the one hand, and
comparison with existing susceptible maps on the other, distinguishes this work. The
susceptibility maps were created using the AHP and F-AHP models and the existing
NCESS landslide susceptibility map, which is also a product of multi-criteria decision-
making (MCDM) analysis. However, the existing GIS-TISSA map for Kerala state was
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not created using MCDM analysis. Furthermore, this study also has the distinction of
comparing two MCDM models with an existing MCDM-derived map and a non-MCDM-
derived susceptibility map.

To fulfill the aim of this study, an ideal study area is warranted. With numerous recent
landslides in the high-range local self-government (LSG; LSG is the smallest administrative
unit in India) bodies in the Kottayam district, resting in the Western Ghats, thus became the
obvious choice. Thus, this study applied the AHP and F-AHP models to the aftermath of
the 2021 Koottickal landslide disaster, compared these models with the GIS-TISSA [11,12]
and NCESS [13] models, and assessed the influence of the conditioning factors (slope, soil
texture, land use/land cover, geomorphology, road buffer, normalized difference road
landslide index, normalized difference water index, normalized burnt ratio, soil-adjusted
vegetation index, and lithology) on landslide initiation. The intention of considering LSG
rather than a geographic unit (such as a river basin) is because a geographic unit might pass
through different administrative units, and hence, implementing management practices
becomes an administrative hurdle.

2. Materials and Methods
2.1. Study Area

The area selected for this study lies between 9◦20′ and 9◦55′north latitudes, and 76◦30′

and 77◦0′east longitudes. This area comprises 20 LSGs (19 panchayat (panchayat is the
LSG in a hamlet) and one municipality (municipality is the LSG in a town)), namely, Bha-
rananganam, Erumely, Kadanad, Karoor, Koottickal, Koruthodu, Melukavu, Moonnilavu,
Mundakkayam, Parathodu, Poonjar, Poonjar-Thekkekara, Ramapuram, Teekoy, Thalanad,
Thalappalam, Thidanad, Uzhavoor, Veliyannoor, and Erattupetta municipality. The study
area spans around 737.77 km2 (Figure 2). A total of 73 landslides occurred in this region
during the 2018 monsoon season [6].
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2.2. Major Steps and Methodology

The modeling process involves the following eight steps (Figure 3):

i. The data were generated from different sources as depicted in Table 1. ArcGIS Pro
and ERDAS Imagine 10.0 were utilized to generate different layers.

ii. The landslide incidence locations for the year 2018 acquired from Hao et al. [6] were
utilized for training and validation.

iii. The continuous factor layers (slope, normalized difference road landslide index
(NDRLI), normalized difference water index (NDWI), normalized burnt ratio (NBR),
and soil-adjusted vegetation index (SAVI)) were categorized into five classes using
the natural breaks method [72–75].

iv. The multi-collinearity analysis of the conditioning factors was carried out using
R 4.2.2 software.

v. To validate the susceptibility maps, the incidence locations were split into two:
training (60%) and validation datasets (40%).

vi. The AHP and F-AHP models were utilized to create maps of landslide susceptibility.
The weights for these models were computed using Microsoft Excel and FisPro
3.8 [76,77] software.

vii. Two existing landslide susceptibility maps, the GIS-TISSA model [11,12] and the
NCESS model [13], were used for comparing the prediction capability of these
four maps.

viii. The ROC, accuracy, MAE, and RMSE techniques were used to validate the four
susceptibility maps. The R 4.2.2 software was used to create the ROC curves and to
compute accuracy, MAE, and RMSE values, and IBM SPSS Statistics 25 was utilized
to compute the Kappa index.

Table 1. Data sources.

Data Source Thematic
Layers Derived Data Type Spatial

Resolution Scale

ASTER GDEM https://earthexplorer.usgs.gov/
(accessed on 22 August 2022) Slope angle Continuous 30 m

Landsat 8 OLI image https://earthexplorer.usgs.gov/
(accessed on 15 November 2022)

NBR
NDWI
SAVI
LULC

NDRLI
Geomorphology

Continuous 30 m

Soil map National Bureau of Soil Survey
and Land Use Planning Soil texture Discrete 1:250,000

Geological map Geological Survey of India Lithology Discrete 1:50,000

Topographical map Survey of India Road Discrete 1:50,000

Google Earth Pro
https://www.google.com/intl/

en_in/earth/versions/
(accessed on 24 November 2022)

Road (updated) Discrete 15 cm to 15 m

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.google.com/intl/en_in/earth/versions/
https://www.google.com/intl/en_in/earth/versions/
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2.3. Conditioning Factors

The slope was computed from the ASTER GDEM using ArcGIS surface (spatial analyst)
tools. The road cuttings were derived from the topographic maps and Google Earth Pro,
and a 100 m buffer was computed utilizing the ArcGIS proximity tool. Soil and lithology
were extracted from the National Bureau of Soil Survey and Land Use Planning (NBSS
& LUP) soil map and Geological Survey of India (GSI) geological maps, respectively,
using ArcGIS tools. The ERDAS Imagine software was employed to extract the LULC
types from the Landsat 8 images (acquired on 16 January 2022, Path: 144, Row: 053,
Landsat scene identifier: LC81440532022016LGN00). In the ERDAS Imagine software,
various LULC types found in this area were classified using the maximum likelihood
supervised classification approach [78,79]. The geomorphic classes were extracted by visual
interpretation of Landsat 8 images aided by field knowledge. The topographical map and
high-resolution Google Earth imagery were used to verify this. The NDRLI, NBR, NDWI,
and SAVI were derived from the Landsat images utilizing the ArcGIS map algebra tool.
Equations (1) [80], (2) [81,82], (3) [83], and (4) [84] were used to compute the NDRLI, NBR,
NDWI, and SAVI, respectively:

NDRLI =
(SWIR1− Blue)
(SWIR1 + Blue)

(1)

NBR =
(NIR − SWIR)
(NIR + SWIR)

(2)

NDWI =
(Green − NIR)
(Green + NIR)

(3)

SAVI =
(

NIR− Red
NIR + Red + L

)
× (1 + L) (4)
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where SWIR, Blue, NIR, Green, and Red stand for spectral reflectance in short wave infrared,
blue, near-infrared, green, and red bands, respectively, and L stands for the soil brightness
correction factor (0.5).

2.4. Accuracy Assessment Using Cohen’s Kappa Coefficient

Cohen’s Kappa coefficient [85] was used to assess the LULC classification. SPSS
software was utilized to compute the Kappa coefficient using Equation (5) [86]. A total of
110 locations have been collected with the aid of a handheld Global Positioning System for
the accuracy assessment. A Kappa coefficient value between 0.8 and 0.9, and between 0.9
and 1.0 represent strong and almost perfect agreements, respectively [87].

k =
Po − Pc

1− Pc
(5)

where Po = proportion of observed similarity and Pc = proportion of similarities by chance

2.5. Multi-Collinearity Analysis

Multicollinearity occurs when one or more independent variables have a significant
correlation with one another [88]. The tolerance and variance expansion factor (VIF) can be
used to assess multicollinearity [89]. A factor is believed to have multicollinearity when
the VIF is greater than 10 and the tolerance is less than 0.1 [90]. The VIF was computed
using Equation (6) [91]. Tolerance is the reciprocal of the VIF and was determined using
Equation (7) [92]:

VIFj =
1

1− R2
j

(6)

Tol = 1− Rj
2 (7)

where R2
j is the multiple coefficients of determination of the jth factor.

2.6. AHP Modeling

The AHP is an MCDM method established by Thomas L. Saaty [93]. This approach
deconstructs complex problems into a hierarchy and identifies the best solution for the
goal [94]. The most important steps are making the matrix for pair-wise comparisons and
finding the eigenvector, the weighting coefficient (Table 2), and the consistency ratio (CR)
(Table 3) [73].
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Table 2. Pairwise comparison matrix.

SA Soil LULC Geom. RB NDRLI NDWI NBR SAVI Litho. Vp Cp

SA 1 2 3 4 5 6 7 8 9 10 4.529 0.290

Soil 1/2 1 2 3 4 5 6 7 8 9 3.392 0.218

LULC 1/3 1/2 1 2 3 4 5 6 7 8 2.414 0.155

Geom. 1/4 1/3 1/2 1 2 3 4 5 6 7 1.707 0.109

RB 1/5 1/4 1/3 1/2 1 2 3 4 5 6 1.196 0.077

NDRLI 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 0.836 0.054

NDWI 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 0.586 0.038

NBR 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 0.414 0.027

SAVI 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 0.298 0.019

Litho. 1/10 1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 0.221 0.014

∑ 2.93 4.83 7.72 11.59 16.45 22.28 29.08 36.83 45.50 55.00 15.59 1.00

SA = slope angle, Geom. = geomorphology, RB = road buffer, Litho. = lithology.

Table 3. Normalized matrix.

SA Soil LULC Geom. RB NDRLI NDWI NBR SAVI Litho. ∑ Rank [C] [D] =
[A]*[C]

[E] =
[D]/[C] λmax CI CR

SA 0.34 0.41 0.39 0.35 0.30 0.27 0.24 0.22 0.20 0.18 2.90 0.290 3.17 10.95

10.54 0.06
0.04

(4.1%)

Soil 0.17 0.21 0.26 0.26 0.24 0.22 0.21 0.19 0.18 0.16 2.10 0.210 2.32 11.06

LULC 0.11 0.10 0.13 0.17 0.18 0.18 0.17 0.16 0.15 0.15 1.52 0.152 1.66 11.00

Geom. 0.09 0.07 0.06 0.09 0.12 0.13 0.14 0.14 0.13 0.13 1.09 0.109 1.18 10.83

RB 0.07 0.05 0.04 0.04 0.06 0.09 0.10 0.11 0.11 0.11 0.79 0.079 0.83 10.58

NDRLI 0.06 0.04 0.03 0.03 0.03 0.04 0.07 0.08 0.09 0.09 0.56 0.056 0.58 10.34

NDWI 0.05 0.03 0.03 0.02 0.02 0.02 0.03 0.05 0.07 0.07 0.40 0.040 0.40 10.15

NBR 0.04 0.03 0.02 0.02 0.02 0.01 0.02 0.03 0.04 0.05 0.28 0.028 0.28 10.08

SAVI 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.04 0.20 0.020 0.20 10.14

Litho. 0.01 0.02 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.15 0.015 0.15 10.29

∑ 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 10.00 1.00 105.46
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Equations (8) and (9) were used to compute the eigenvector (Vp) and weighting
coefficient (Cp) [73].

Vp = k
√

W1× . . . Wk (8)

where k = no. of factors and W = ratings.

Cp =
Vp

Vp1 + . . . Vpk
(9)

As described by Danumah et al. [95], the normalized matrix, priority vector (C), overall
priority (D), and rational priority (E) were determined.

Equations (10)–(12) were used to compute the eigenvalue (λmax), consistency index
(CI), and consistency ratio [73]:

λmax =
[E]
k

(10)

CI = (λmax− k)/(k− 1) (11)

CR =
CI
RI

(12)

where the (RI) random index = 1.49 [93].
A consistency ratio value of less than 0.1 is admissible [93]. The analysis is repeated

if the CR is greater than 0.1. This model yields an acceptable CR (0.041). As a result, the
outcomes are trustworthy.

The AHP weights are depicted in Equation (13).

LSZ = (0.290× SA) + (0.218× Soil) + (0.155× LULC) + (0.109×Geom.)+
(0.077× RB) + (0.054×NDRLI) + (0.038×NDWI) + (0.027×NBR)+
(0.019× SAVI) + (0.014× Litho.)

(13)

2.7. F-AHP Modeling

The F-AHP, which is an ensemble of the AHP and fuzzy logic models, was used to
weigh the factors [96]. This model solves the limitations of the AHP model by allowing
decision-makers to evaluate their preferences within an acceptable interval [97]. Buck-
ley [98] presented a method for comparing fuzzy ratios (triangular membership functions),
and that method was employed in this study. The major procedures involved are the
establishment of a pair-wise comparison matrix (Table 4), the computation of the geometric
mean (Table 5), the determination of fuzzy weights (see Table 6), and the computation of
averaged and normalized relative weights (Table 7) [73]. The following are the steps in
F-AHP modeling:

Step 1: The factors were compared.

The fuzzy triangular scale (1/4, 1/3, 1/2) will be used when factor 1 (P1) is less
essential than factor 2 (P2). For the comparison matrix, the scale will be (1/4, 1/3, 1/2) [99].

Equation (14) [73] depicts the matrix:

Ã
k
=


d̃

k
11 d̃

k
12 . . . d̃

k
1n

d̃
k
21

. . .
. . .
. . .

. . . d̃
k
2n

. . . . . .

d̃
k
n1 d̃

k
n2 . . . d̃

k
mn

 (14)

where d̃
k
ij reflects the kth decision maker’s priority for the ith factor over the jth factor [99].

Step 2: d̃ij was computed using Equation (15) [73].
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d̃ij =
∑K

k=1 d̃
k
ij

K
(15)

Step 3: Equation (16) [73] was used to modify the matrix.

Ã =

d̃11 · · · d̃1n
...

. . .
...

d̃n1 · · · d̃nn

 (16)

Step 4: Equation (17) [98] was used to compute the geometric average.

r̃i =

(
n

∏
j=1

d̃ij

)1/n

, i = 1, 2, . . . , n (17)

where r̃i = triangular values.

Step 5: The next three sub-processes (5a, 5b, and 5c) were used to compute the fuzzy weight:
Step 5a: The vector summation was computed;
Step 5b: The fuzzy triangular number was replaced to arrange it in ascending order after

computing the summation vector’s (−1) power;
Step 5c: Each r̃i was multiplied by the reverse vector to determine the fuzzy weight as

shown in Equations (18) and (19).

w̃i = r̃i × (̃r1 + r̃2 + . . . + r̃n)
−1 (18)

w̃i = (lwi, mwi, uwi) (19)

Step 6: The de-fuzzification of fuzzy weights using Equation (20) [100].

Mi =
lwi, mwi, uwi

3
(20)

Step 7: For the standardization of Mi, Equation (21) [73] was used.

Ni =
Mi

∑n
i=1 Mi

(21)

The F-AHP weights are depicted in Equation (22).

LSZ = (0.283× SA) + (0.215× Soil) + (0.157× LULC) + (0.112×Geom.)+
(0.079× RB) + (0.055×NDRLI) + (0.039×NDWI) + (0.027×NBR)+
(0.020× SAVI) + (0.010× Litho.)

(22)
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Table 4. Pair-wise comparisons of factors.

SA Soil LULC Geom. RB NDRLI NDWI NBR SAVI Litho.

SA (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9) (8,9,10) (10,10,10)

Soil (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9) (8,9,10)

LULC (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8) (7,8,9)

Geom (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7) (6,7,8)

RB (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6) (5,6,7)

NDRLI (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5) (4,5,6)

NDWI (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4) (3,4,5)

NBR (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3) (2,3,4)

SAVI (1/10,1/9,1/8) (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1) (1,2,3)

Litho (1/10,1/10,1/10) (1/10,1/9,1/8) (1/9,1/8,1/7) (1/8,1/7,1/6) (1/7,1/6,1/5) (1/6,1/5,1/4) (1/5,1/4,1/3) (1/4,1/3,1/2) (1/3,1/2,1) (1,1,1)
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Table 5. Geometric means of fuzzy comparison values.

Fuzzy Geometric Mean Value (
~
ri)

SA 3.64 4.53 5.32

Soil 2.59 3.36 4.23

LULC 1.83 2.41 3.13

Geom. 1.28 1.71 2.25

RB 0.90 1.20 1.59

NDRLI 0.63 0.84 1.12

NDWI 0.44 0.59 0.78

NBR 0.32 0.41 0.55

SAVI 0.24 0.30 0.39

Litho. 0.19 0.22 0.28

Table 6. Relative fuzzy weights of each factor.

Fuzzy Weight (
~

Wi)

SA 0.19 0.29 0.44

Soil 0.13 0.22 0.35

LULC 0.09 0.16 0.26

Geom. 0.07 0.11 0.19

RB 0.05 0.08 0.13

NDRLI 0.03 0.05 0.09

NDWI 0.02 0.04 0.06

NBR 0.02 0.03 0.05

SAVI 0.01 0.02 0.03

Litho. 0.01 0.01 0.02

∑
~
ri 12.046 15.557 19.626(

∑
~
ri

)−1 0.051 0.064 0.083

Table 7. Averaged and normalized relative weights of factor.

Weight (Mi) Normalized Weight (Ni)

SA 0.306 0.283

Soil 0.233 0.215

LULC 0.169 0.157

Geom. 0.121 0.112

RB 0.085 0.079

NDRLI 0.059 0.055

NDWI 0.042 0.039

NBR 0.029 0.027

SAVI 0.021 0.020

Litho. 0.016 0.01

∑ 1.08 1.00
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2.8. GIS-TISSA Model

The GIS-TISSA [11], a python-based model, offers an alternative way of deriving a
factor of safety (FS) (slope stability) in a GIS domain. This model represents slope stability
as an FS; the slope is stable when the FS is greater than 1 and unstable when the FS is
less than 1 [101]. The model estimates where a landslide is most likely to start, but the
spreading process, in which the mass of the failing slope breaks away from the ground and
goes downslope, must be assessed individually using different methods.

2.9. NCESS Model

The landslide susceptibility map, which was created by NCESS and made available
to the public by the Kerala State Disaster Management Authority [13], is the map that is
included in the disaster management plans of the state and districts [102].

2.10. Validation of the Maps
2.10.1. ROC Technique

A two-dimensional metric of classification performance is the ROC technique [103].
The model has outstanding performance when the AUC value is within the range of
0.9–1.0; excellent performance when the value is within the range of 0.8–0.9; and acceptable
performance when the value is within the range of 0.7–0.8 [75]. The AUC values ranged
between 0.6 and 0.7, and values of 0.5 and 0.6 depicted poor performance and failure,
respectively [104]. Utilizing the training and validation datasets, the AUC value can
reflect the model’s success and prediction rate [105]. In this study, the incidence data were
randomly divided into training and validation datasets of 60% and 40% [106], respectively,
and the AUC values were calculated with SPSS software. The 60–40% split is acceptable
when the dataset is small [106].

2.10.2. Accuracy

The ratio of true instances retrieved (both positive and negative) among all instances
retrieved is the accuracy [107]. Accuracy was computed using Equation (23) [108]:

Accuracy =
TP + TN

TP + TN + FP + FN
(23)

where TP = true positive, TN = true negative, FP = false positive, and FN = false negative.

2.10.3. MAE

The average of the absolute error values is referred to as the MAE [109]. The MAE
was computed using Equation (24) [110]:

MAE =
1
n

n

∑
i=1

∣∣∣Yi − Ỹi

∣∣∣ (24)

where Yi is the predicted value, Ỹ i is the observed value, and n is the number of inci-
dences/points.

2.10.4. RMSE

The square root of the mean of the square of all the errors is known as the RMSE [111].
The RMSE was computed using Equation (25) [112]:

RMSE =

√
1
n

n

∑
i=1

(
Yi − Ỹi

)2
(25)
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3. Results
3.1. Multicollinearity

The collinearity statistics are shown in Table 8. From the analysis, it was found that
LULC (0.932) has the highest tolerance value, followed by road buffer (0.920), whereas
NDWI (0.206) has the lowest tolerance value, followed by NDRLI (0.208). The VIF values
range from 1.073 (LULC) to 4.854 (NDWI). This ascertained that there are no collinearity
issues among the factors since the tolerance value is above 0.1 and the VIF value is below
10 for all the conditioning factors.

Table 8. Collinearity statistics.

Factors
Collinearity Statistics

Tolerance VIF

Slope 0.829 1.206

Soil 0.853 1.173

LULC 0.932 1.073

Geomorphology 0.853 1.173

Road buffer 0.920 1.088

NDRLI 0.208 4.808

NDWI 0.206 4.854

NBR 0.215 4.651

SAVI 0.217 4.608

Lithology 0.868 1.152

3.2. Conditioning Factors
3.2.1. Slope

One of the most relevant conditioning factors impacting the probability of landslides
is the slope gradient [113]. Topography with a higher slope is more likely to fail [17,114].
The shear stress in the soil rises as the slope angle rises, causing earth materials to move
downslope [17]. The slope, which ranges from 0 to 74.47◦, is depicted in Figure 4a. The
steeper slopes are found along the eastern portion of this area, where a considerable
number of landslide incidences have occurred. It was found that 32 (43.83%) and 30
(41.09%) landslides happened in the classes with slopes between 22.48◦ and 31.83◦ and
31.83◦ and 74.47◦, respectively.

3.2.2. Soil

In steep terrain, the clay content in the soil forms a possible slip zone, which can
induce slope failure and landslides [114]. As clayey soil has low permeability and high
porosity, it holds more water than other soil types [17]. The shear strength of the soil is
reduced when pore–water pressure rises, resulting in slope failure [115]. The soil types
observed in this region include loam, gravelly loam, clay, and gravelly clay (Figure 4b). A
total of 63 (86.30%) landslides were recorded in locations with clayey soil, which confirms
the above statement.
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3.2.3. Land Use/Land Cover (LULC)

LULC reflects natural and human-made influences that affect slope stability in a
given location, either directly or indirectly [114]. Landslides are less likely in areas with
vegetation because plant roots provide mechanical support, which enhances the soil’s
shearing strength [116]. Shu et al. [117] observed that landslide density was substantially
lower in areas covered by forests and shrubs. According to Abedin et al. [118], built-up
areas are one of the most landslide-prone land use types. This is due to the modifications
made to mountainous terrain for various development activities. Landslides are more
likely to occur on barren soil [119] due to the weaker soil strength, which leads to instability.
The different LULC types observed in this region are water bodies, forests, agricultural
land, built-up areas, and wasteland (Figure 5a). It was found that 35 (47.94%) landslides
occurred on wasteland, followed by 30 (41.09%) landslides on agricultural land. Only five
(6.84%) landslides occurred in the forest, which substantiates the study by Shu et al. [117].
The Kappa coefficient for the LULC classification is 0.818, which shows strong agreement
(Tables 9 and 10).
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Table 9. Theoretical error matrix of LULC classification.

LULC classes

Total
Forest Built-Up

Area
Agricultural

Land Wasteland

GPS points

Forest 5 0 0 1 6

Built-up area 0 3 0 1 4

Agricultural land 2 1 82 0 85

Wasteland 2 1 0 12 15

Total 9 5 82 14 110

Table 10. Cohen’s Kappa measures.

Value Asymptotic
Standard Error a Approximate T b Approximate

Significance

Measure of
agreement–Kappa 0.818 0.057 12.225 0.000

No. of valid cases 110 - - -
a Not assuming the null hypothesis. b Employing the asymptotic standard error assuming the null hypothesis.

3.2.4. Geomorphology

Wang et al. [120] describe geomorphology as a significant factor that influences the
initiation of landslides. The geomorphic classes in this area include water bodies, flood-
plains, plateaus, and denudational hills (Figure 5b). The elevated areas of the study area
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are occupied by denudational hills. All the 73 landslides reported are confined to denuda-
tional hills.

3.2.5. Road Buffer

The excavation of slopes for road construction and widening is common in moun-
tainous terrain, and it has a significant impact on slope stability [121,122]. A total of nine
landslides (12.32%) were recorded within the 100-m buffer distance of roads (Figure 5c).
This shows that road cuttings did not have much of an effect on the number of landslides
that occurred.

3.2.6. Normalized Difference Road Landslide Index (NDRLI)

Road-induced landslides are extracted using the NDRLI [80]. Higher NDRLI values
imply sites of unscientifically modified slopes for road cuttings, which might facilitate
landslides and make them more vulnerable to future landslides. The NDRLI values of this
area range from −0.25 to 0.50 (Figure 5d), which is grouped into five classes (−0.25 to 0.04,
0.04 to 0.09, 0.09 to 0.13, 0.13 to 0.18, and 0.18 to 0.50). According to the analysis, 29 (39.72%)
landslides were recorded in the class with an NDRLI value range of 0.18–0.50, followed by
21 (28.76%) landslides occurring in the class with a value range of 0.13–0.18. This confirms
that the NDRLI has a significant influence on landslide occurrence.

3.2.7. Normalized Difference Water Index (NDWI)

Water bodies are extracted using the NDWI [123,124]. The NDWI scale ranges from
−1 to 1 [125], with values ranging from 0.2 to 1 representing water surface, 0.0 to 0.2
representing flooded areas or areas with higher humidity,−0.3 to 0.0 representing moderate
drought, non-aqueous surfaces, and −1.0 to −0.3 representing drought, non-aqueous
surfaces [126]. Landslides are more likely in places with NDWI values between 0.0 and 0.2,
as the soil moisture in this area is higher. As pore pressure increases and soil shear strength
decreases, soil moisture plays a crucial role in causing landslides [127]. This area’s NDWI
values range from−0.49 to 0.19 (Figure 6a) and are classified into five classes (−0.49–−0.22,
−0.22–−0.17, −0.17–−0.14, −0.14–−0.09, and −0.09–0.19). From the analysis, it is found
that only five (6.84%) landslides occurred in areas with positive NDWI values. This
confirmed that the NDWI does not have much influence on the initiation of landslides.

3.2.8. Normalized Burnt Ratio (NBR)

The NBR is a factor for identifying burned areas and estimating burn severity [128].
Higher NBR values indicate burnt areas, which are more vulnerable to landslides because
fire lowers soil infiltration capacity and increases soil erodibility by obliterating plant and
ground cover, making the area more prone to landslides [129]. The NBR values of this
area range from −0.56 to 0.56 (Figure 6b), which are grouped into five classes (−0.56 to
0.14, 0.14 to 0.25, 0.25 to 0.33, 0.33 to 0.40, and 0.40 to 0.56). From the spatial analysis, it is
proven that five (6.84%) landslides were recorded in the class with an NBR value range of
0.40–0.56, followed by 31 (42.46%) landslides in the class with a value range of 0.33–0.40,
and 22 (27.40%) landslides in the class with a value range of 0.25–0.33, respectively. Thus, it
is proved that the NBR has only a considerable role in the initiation of landslides.

3.2.9. Soil-Adjusted Vegetation Index (SAVI)

The SAVI values vary from −1.0 to 1.0, with low values indicating a lack of green
vegetation [130]. This index is similar to the NDVI and is appropriate for places with little
vegetation cover and open soil surfaces [130,131]. The probability of landslides is high
in places with lower SAVI values. The SAVI values of this area range from −0.09 to 0.88
(Figure 6c), which is grouped into five classes (−0.09 to 0.37, 0.37 to 0.48, 0.48 to 0.57, 0.57 to
0.65, and 0.65 to 0.88). The spatial analysis found that 41 (56.16%) landslides were recorded
in areas with SAVI values ranging from 0.57 to 0.88, and only 14 (19.17%) landslides were
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reported in areas with SAVI values between −0.09 and 0.48. This confirmed that the SAVI
does not have much influence on the initiation of landslides.
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3.2.10. Lithology

Rock strength and permeability are determined by lithological units [132]. Landslides
often happen in rock strata with low shear strength and permeability [114]. The rock types
observed in this region are charnockite, granite, and hornblende gneiss (Figure 6d). All
73 landslides occurred on charnockite rocks. Though all the landslides occurred in areas
with the charnockite rock type, this factor cannot be confirmed as a landslide-initiating
factor in the study area. This is because a major portion (99.5%) of this region is occupied
by this rock type. Moreover, this is a massive, high-grade Precambrian metamorphic rock,
which has little influence on landslides. This indicates that lithology does not have much
impact on slope failures.

3.3. Landslide Susceptible Zones

The landslide susceptibility is high in the eastern portion of this region. The suscepti-
bility maps are depicted in Figure 7a–d. The area and percentage of different susceptible
zones are depicted in Table 11. A total of 18.58%, 18.67%, 15.06%, and 8.35% of the study
area belong to highly susceptible zones for the AHP, F-AHP, GIS-TISSA, and NCESS models,
respectively. It was found that the highly susceptible zone has steeper slopes (22.48–74.47◦),
clayey soil, LULC types such as wasteland and agricultural land, denudational hills, and
NDRLI values between 0.13 and 0.50. This study confirmed that the NBR, NDWI, SAVI,
and road buffers do not have much influence on landslide initiation. This ascertained that
the landslide occurrence is due to natural as well as human-induced reasons. Koottickal,
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Poonjar-Thekkekara, Moonnilavu, Thalanad, and Koruthodu are the LSGs that are highly
susceptible to landslides in the Kottayam district.
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Table 11. Area and percentage of susceptible zones.

AHP F-AHP GIS-TISSA NCESS

Susceptible
Zones

Area in
sq. km.

Percentage
of Area

Area in
sq. km.

Percentage
of Area

Area in
sq. km.

Percentage
of Area

Area in
sq. km.

Percentage
of Area

Low 320.34 43.42 317.32 43.01 411.67 55.80 50.54 6.85

Moderate 280.35 38.00 282.71 38.32 82.19 11.14 133.68 18.12

High 137.08 18.58 137.74 18.67 111.11 15.06 61.61 8.35

Total 737.77 100 737.77 100 604.97 * 82 * 245.83 ** 33.32 **

* 18% of the study area belongs to the no-susceptible zone. ** 66.68% of the study area belongs to the no-
susceptible zone.

3.4. Validation of the Maps

The AUC values for the AHP, F-AHP, TISSA, and NCESS models for the training
dataset are 0.838 (83.8%), 0.849 (84.9%), 0.868 (86.8%), and 0.759 (75.9%), whereas the
AUC values for the validation dataset are 0.867 (86.7%), 0.872 (87.2%), 0.889 (88.9%), and
0.789 (78.9%)(Figures 8 and 9). From the results, it is clear that the AHP, F-AHP, and
TISSA models have an excellent AUC value (AUC value above 0.80), whereas the NCESS
model has an acceptable AUC value (AUC value above 0.70). When comparing all these
models, the TISSA model is found as the most efficient, followed by the F-AHP, AHP, and
NCESS models.
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Other validation matrices such as accuracy, MAE, and RMSE also provided better
results (higher accuracy and lower MAE and RMSE values) for the TISSA model, followed
by the F-AHP, AHP, and NCESS models. The accuracy, MAE, and RMSE of the TISSA
model for the training dataset are 0.863, 0.274, and 0.196, respectively, whereas, for the
validation dataset, the values are 0.869, 0.226, and 0.122, respectively (Table 12).
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Table 12. Validation matrices and values of the training and validation datasets.

Matrices
Training Dataset Validation Dataset

AHP F-AHP TISSA NCESS AHP F-AHP TISSA NCESS

Accuracy 0.831 0.842 0.863 0.752 0.855 0.856 0.869 0.770

MAE 0.292 0.278 0.274 0.422 0.249 0.243 0.226 0.309

RMSE 0.218 0.214 0.196 0.298 0.159 0.147 0.122 0.177

4. Discussion

This modeling study observed that the highly susceptible zone has slopes that are
steeper (22.48–74.47◦), clayey soil, wasteland and agricultural land, denudational hills,
and NDRLI values between 0.13 and 0.50. The study by Khan et al. [133] found 89.76% of
the landslide occurrences on slopes above 20◦. The research by Oh et al. [89] observed a
sharp increase in the number of landslides for slopes greater than 26◦, whereas Getachew
and Meten [119] found this trend for slopes above 25◦. The landslide susceptibility model-
ing by Thomas et al. [17] observed 91.35% of landslides on clayey soil, whereas Babitha
et al. [72] found 65.39% of landslides on the same type of soil. The study by Ajin et al. [58]
also found higher incidences on clayey soil. The increase in water content in clay result-
ing from the percolation of rainfall can reduce its stability (increase stress and decrease
strength) [134,135]. Similar to the findings of this study, Khan et al. [133] found higher
landslide incidences (66.51%) on barren land, and Thomas et al. [17] observed higher
incidences (56.19%) on plantation areas. Abedin et al. [118] in their study observed that
massive landslides occurred mostly in plantation agricultural fields as the trees were not
able to prevent erosion. Ajin et al. [10] also found that the replacement of vegetation with
plantations is one of the reasons for landslide initiation. Denudational hills are the result
of erosional and weathering processes [136], and this geomorphic feature is susceptible to
landslides [137,138]. Vijith et al. [139] in their study identified the majority of landslides
(49.49%) on denudational hills. The factor that represents road-induced landslides, the
NDRLI, shows a significant influence in the study area. Though this factor was not much
used in landslide modeling studies, road density or road buffers have been employed by
many researchers [15,72]. However, the road buffer does not show much influence since
it is a single-class factor and the majority of the sliding occurred beyond this limit. The
significant influence of the NDRLI confirmed that modification of slopes for road widening
or construction is one of the human-induced reasons for landslides. Akshaya et al. [15]
in their research on susceptibility modeling found a majority of sliding (69.56%) along
road cuttings. The landslide susceptibility zonation conducted by Ajin et al. [132] in the
Meenachil and Kanjirappally taluks of the Kottayam district found slope and elevation
as the major influencing factors, followed by drainage density, road density, and LULC.
Even though several studies have mentioned the strong link between landslides and factors
such as NBR, NDWI, and SAVI [127,140–142], this study did not find a strong link between
landslide occurrences and the influence of factors such as the NBR, NDWI, and SAVI.

This study found TISSA as the best model, followed by the F-AHP, AHP, and NCESS
models. The AUC analysis for the validation dataset confirmed that the TISSA model
has the highest performance (an AUC value of 88.9%), which shows a 1.7% increase over
the F-AHP model, a 2.2% increase over the AHP model, and a 10.0% increase over the
NCESS model. For the training dataset, the AUC value of the TISSA model confirmed
better performance with a 10.9% increase over the NCESS model, a 3.0% increase over
the AHP model, and a 1.9% increase over the F-AHP model. The performance of one or
more models can be compared using the ROC curve, which can also be used to evaluate a
model’s overall performance [143]. The accuracy indices generated with the ROC analysis
are not affected by fluctuations brought on by the application of arbitrary decision criteria
or cut-offs, which is the technique’s most desirable characteristic [144]. This study also
found that the TISSA model has the highest accuracy value of 0.869 for the validation
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dataset, which confirmed an increase of 0.099 over the NCESS model’s accuracy value.
The accuracy value highlights how many predictions were correct. In addition, the MAE
and RMSE values of the TISSA model confirmed a decrease in error values of 0.083 and
0.055 over the NCESS model. The accuracy, MAE, and RMSE values also reiterate that
the TISSA model is the best, followed by the F-AHP, AHP, and NCESS models. With the
units of the original data, the MAE and RMSE both express the average magnitude of the
prediction error [145]. While the MAE is unambiguous [146], the RMSE has the advantage
of penalizing large errors more strongly than the MAE [145]. The studies by Escobar-Wolf
et al. [11] and Pikul [101] both found that the GIS-TISSA model works well for identifying
areas that are likely to slide. Of the two MCDM models (AHP and F-AHP) selected for
this study, the F-AHP model is found better than the AHP model. The studies by Akshaya
et al. [15], Meshram et al. [147], Tripathi et al. [148], and Vilasan and Kapse [149] also found
the F-AHP model to be more efficient than the AHP model.

Furthermore, except for the NCESS model, all other models have excellent AUC
values. The reason for the lower value is that the NCESS susceptibility map is outdated.
The NCESS map is 12 years older and is still in use. van Westen et al. [150] assert that every
landslide susceptibility map should be continuously updated; the update frequency may
range from one to ten years, depending on the dynamics of land use change, since land
use determines both the elements at risk and the occurrence of new slides. Considering
the high population density in Kerala and the intense land use change [151–154], this map
needs an immediate update to ensure that it is capable of addressing the larger number of
landslides that occurred as a result of an extreme event such as the 2018 Kerala floods.

Due to the lack of an optimal number of rain gauges or automatic weather stations,
rainfall, the sole triggering factor, is not considered in this model. The global precipitation
datasets and India Meteorological Department (IMD) gridded rainfall data have a low
spatial resolution, and hence, their integration may result in erroneous outputs. In an
analysis of global precipitation datasets, Sun et al. [155] observed considerable disparities
in the variability and magnitude of precipitation estimates. Similarly, Prakash et al. [156]
analyzed four precipitation products and reported that all of them underestimate precipita-
tion significantly. They found that the number and spatial coverage of rain gauge stations,
data assimilation models, and satellite algorithms all limit the reliability of precipitation
datasets. In addition, the inconsistencies stated to limit the product’s ability to monitor
climate change and validate models. Jena et al. [157] investigated the effectiveness of IMD
gridded data (0.25◦ × 0.25◦) and satellite estimates for identifying cloudburst occurrences
over the northwest Himalayas, finding that only 6 out of 18 events could be recognized
using the IMD data when they compared different precipitation datasets (including IMD
gridded data).

5. Conclusions

Landslides are a common hazard in Kerala’s Western Ghats region. The Ghat region
of the Kottayam district has also witnessed many landslides in the past, of which the
Koottickal disasters of 2021 were the most devastating. The present study demarcated the
susceptibility of high-range LSGs in the Kottayam district into three zones using the AHP
and F-AHP models and compared the results with the existing GIS-TISSA and NCESS
susceptibility maps. The spatial analysis revealed that three maps (TISSA, F-AHP, and AHP)
have excellent performance with AUC values above 0.80 (80%). Though the difference in
prediction accuracy is negligible, of these three maps, the one produced using the TISSA
model yields the best result. However, the NCESS map has only acceptable performance
(an AUC value of 0.789). This is because the NCESS map is outdated (published in 2010),
and hence, the change in land use/land cover types for the last decade was not revealed.
According to the TISSA map, a total of 15.06% of this region is highly landslide susceptible.
Slope, soil texture, LULC types, geomorphology, and NDRLI were found to be the most
influential factors, confirming the influence of both natural as well as anthropogenic factors
on landslide occurrence. Though rainfall distribution (the triggering factor) is crucial for
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landslide susceptibility modeling, it is not utilized in this research due to a lack of an
adequate number of rain gauges and automated weather stations. In addition, the IMD
gridded rainfall data and other satellite data are of poor spatial resolution, which is not
suitable for a smaller area.

The created maps will be extremely useful to agencies dealing with landslide hazards
and implementing effective mitigation measures such as landslide early warning systems,
disaster risk reduction guidelines, and sustainable construction practices. This study
also proposes to develop effective guidelines for agricultural practices on hilly terrains,
including crop selection, irrigation methods, and harvesting methods. Hydroseeding of
vegetative species (such as vetiver grass or lemon grass), which can stabilize the slope,
should be planted, and nature-based solutions should be promoted in high- and very-high
susceptible zones. This can minimize the impact of landslides.
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