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Abstract: The Ediacaran peralkaline granites, which were emplaced during the post-collisional
tectonic extensional stage, have a limited occurrence in the northern tip of the Nubian Shield. In this
contribution, we present new mineralogical and geochemical data of Mount El-Sibai granites from the
Central Eastern Desert of Egypt. The aim is to discuss their crystallization condition, tectonic setting,
and petrogenesis as well as the magmatic evolution of their associated mineralization. Mount El-Sibai
consists of alkali-feldspar granites (AFGs) as a main rock unit with scattered and small occurrences
of alkali-amphibole granites (AAGs) at the periphery. The AAG contain columbite, nioboaeschynite,
zircon and thorite as important rare metal-bearing minerals. Geochemically, both of AFG and AAG
exhibit a highly evolved nature with a typical peralkaline composition (A/CNK = 0.82–0.97) and
formed in within-plate anorogenic setting associated with crustal extension and/or rifting. They
are enriched in some LILEs (Rb, K, and Th) and HFSEs (Ta, Pb, Zr, and Y), but strongly depleted in
Ba, Sr, P and Ti with pronounced negative Eu anomalies (Eu/Eu* = 0.07–0.34), consistent with an
A-type granite geochemical signature. The calculated TZrn (774–878 ◦C) temperatures indicate that
the magma was significantly hot, promoting the saturation of zircon. The texture and chemistry of
minerals suggest that they were crystallized directly from a granitic magma and were later subject to
late- to post-magmatic fluids. Both granitic types were most likely generated through partial melting
of a juvenile crustal source followed by magmatic fractionation. The lithospheric delamination is the
main mechanism which causes uplifting of the asthenospheric melts and hence provides enough heat
for crustal melting. The produced parent magma was subjected to prolonged fractional crystallization
to produce the different types of Mount El-Sibai granites at different shallow crustal levels. During
magma fractionation, the post-magmatic fluids (especially fluorine) contribute significantly to the
formation of rare metal mineralization within Mount El-Sibai granites.

Keywords: fractional crystallization; rare metals; peralkaline granite; columbite; Mount El-Sibai;
Nubian Shield
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1. Introduction

Peralkaline A-type magmatic rocks are frequently found in multiphase intrusions
within intracontinental extensional settings, and their mineral compositions can vary
widely [1,2]. These rocks contain significant amounts of alkali metals (Na2O + K2O/
Al2O3 > 1) and incompatible elements, such as Zr, Hf, Nb, and Ta. They are sourced from
multiple origins and undergo various processes and tectonic settings that contribute to their
diverse mineral and geochemical contents [3,4]. Peralkaline granites have attracted consid-
erable attention from researchers due to their potential as indicators of magmatic processes,
formation conditions and tectonic environments. The Neoproterozoic alkaline/peralkaline
granites are widely distributed in the Arabian Nubian Shield (ANS) (Figure 1a), but their
precise origin is still a topic of debate [3].
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Figure 1. (a) General geologic map of the ANS, showing the distribution of the alkaline/peralkaline
granitic plutons including the location of the study area; (b) geologic map of Mount El-Sibai area
showing the distribution of the analyzed samples.

The basement rocks found in the Eastern Desert are the northernmost exposures of the
ANS and were formed during the late Proterozoic Pan-African events (900–550 Ma) [5–7].
These rocks are made up of a juvenile crust that was created by the merging and accumula-
tion of continental and oceanic magmatic arcs [7,8]. In the ANS’s northern region, many
granitoids were formed during the syn-orogenic and late-to-post-orogenic stages. Subduc-
tion and collision events caused the development of syn-orogenic calc-alkaline magmatism,
followed by post-collisional magmatism that generated high-K calc-alkaline, alkaline, and
peralkaline rocks in the final stages of the Pan-African orogeny (650–550 Ma) [7,9,10]. The
alkaline/peralkaline granites from the Egyptian Eastern Desert are currently attracting
considerable attention because they frequently contain appreciated concentrations of rare
earth elements (REEs), U, Th, Ta, and Nb, which are of potential economic value [5,11].
Despite numerous studies on post-collisional peralkaline granites in the Egypt Eastern
Desert, their origin and geotectonic evolution remain uncertain [12].

Mount El-Sibai (640–590 Ma; [13]), situated in the central Eastern Desert of Egypt
(Figure 1b), is a significant peralkaline intrusion. Previous studies have examined the petro-
logical and isotopic characteristics of El-Sibai granites [13–16]. However, the origin of these
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specialized geochemical peralkaline granites and their associated rare metal mineralization
remains a topic of contention. Therefore, this article provides new fieldwork observations,
and whole-rock (major and trace elements) geochemical and in situ mineral chemistry
data of the Mount El-Sibai granites. The main objective is to provides insights into the
tectonic setting and magmatic evolution of the studied granites, along with explaining the
mechanisms by which the rare metal-bearing minerals (e.g., fluorite, columbite, thorite,
zircon, and nioboaeschynite) were formed within El-Sibai granites.

2. Geologic Setting

The ANS is a prominent Pan-African orogenic belt that extends across accreted terranes
from the Mozambique and Madagascar belts in the east to Eastern Egypt, Sinai, Jordan,
Western Arabia, and Yemen in the west [8,17] (Figure 1a). The juvenile crust of the ANS
was formed during the Neoproterozoic Era through a pre-collisional stage characterized by
island-arc volcanism [8]. The collisional stage ended between 615 and 600 Ma, followed by
orogenic collapse within the period 595–575 Ma, and subsequent transpressional tectonism
along significant shear zones [18–20]. After the cessation of the Pan-African orogenic
compressive tectonic activity around 550 Ma, an extended phase of anorogenic alkaline
complexes intruded over almost the entire Phanerozoic Era until the opening of the Red Sea
about 23 Ma ago [3,21]. These alkaline complexes primarily intruded along deep-seated,
reactivated, Pan-African fractures and shear zones, or at the intersections of such fracture
systems. Many of these occurrences are associated with significant mineralization and
hydrothermal alteration [22].

In the Egyptian basement complex, granitoids are the most dominant intrusive rocks,
making up about 50% of all such rocks [23,24]. These granitoids are traditionally categorized
into two main groups based on their age, composition, and geochemistry. The older suite is
characterized as grey, calc-alkaline, syn-tectonic, I-type intrusions, ranging in composition
from diorite to granodiorite, and occasionally granite. The younger suite, on the other hand,
comprises, typically pink to red, calc-alkaline, alkaline and peralkaline, late to post-tectonic,
I- and A-type granites [25].

The Mount El-Sibai granitic pluton is a prominent mountainous region (~1378 m; as
a maximum altitude) situated in the central Eastern Desert of Egypt, between latitudes
25◦47′ N and 25◦40′ N, and longitudes 34◦04′ E and 34◦16′ E (Figure 1b). The pluton
consists of medium- to very coarse-grained, massive, white grey to pink alkaline granitic
rocks. It crosscuts host rocks composed of tonalite, granodiorite, metasedimentary, and
metavolcanic rocks, displaying sharp and nonreactive contacts. Field and petrographic
investigations indicate that Mount El-Sibai constitutes a composite pluton with two major
units. The main unit, which makes up approximately 95% of the pluton, primarily consists
of alkali-feldspar granites (AFGs) with small occurrences of alkali-amphibole-bearing
granites (AAGs) located at the northern and southern ends, respectively (Figure 1b). The
AFGs are massive, medium- to coarse-grained, and typically have red-gray to reddish-
pink colors, although they appear monotonous in the field. Additionally, the AFGs are
extensively deformed within the pluton’s core. The AAGs have gradational contacts with
AFGs (Figure 2a) and sharp contacts with metavolcanic and metasedimentary rocks without
any evidence of meta-somatic alteration (Figure 2b). The AAGs are medium-grained and
exhibit a range of pink, rose, and reddish colors, although they share the same petrographic
characteristics. The eastern portion of the mapped area is characterized by low-moderate
hills with gentle slopes, where granodiorites are exposed. These granodiorites are gray,
medium- to coarse-grained rocks that are rich in mafic minerals. Two sets of NW- and
N-trending quartz veins and doleritic to trachytic dykes cross-cut Mount El-Sibai.
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Figure 2. (a) Field photograph showing the sharp contact between the main granitic varieties (AFG
and AAG) of Mount El-Sibai; (b) field photograph displaying the sharp contact between AAG and
metavolcanics in the north of Mount El-Sibai.

3. Analytical Methods

The complete description of the analytical methods is provided in the Supplementary
Document S1. Here, we mention the methods used in this study. Thirty-six refined polished
thin sections were prepared for mineralogical and petrographic studies using optical
polarizing microscope at the Geology Department, Assuit University (Egypt). A subset of
these sections was selected and coated with carbon for the analysis of major minerals (K-
feldspar, plagioclase, amphibole, and biotite) and ore minerals (zircon, thorite, columbite,
and nioboaeschynite) using a CAMECA SX5 electron microprobe (CAMECA, Gennevilliers
Cedex, France) at the Department of Lithospheric Research, University of Vienna (Austria).
A total of 20 representative samples were selected for whole-rock major, trace, and REEs
analyses using a sequential Philips PW 2400 X-ray spectrometer (Malvern Panalytical,
Malvern, United Kingdom) at University of Vienna (Austria) and Laser Ablation ICP-MS
at Central Analytical Facilities Lab, Stellenbosch University (South Africa).

4. Results
4.1. Petrographic Features and Mineral Chemistry

Petrographic examination supports the division of the investigated granites into alkali-
feldspar granites (AFGs) and alkali-amphibole bearing granites (AAGs). The AFGs are
typically characterized by a pink to pale pink color, medium-to-coarse-grained (Figure 3a),
and a hypidiomorphic texture (Figure 3b). They primarily consist of alkali feldspars
(45–63%) and quartz (29–36%), along with varying amounts of plagioclase (2–5%) and
mafic minerals (1–2%). Accessory minerals (>1 vol%) such as zircon, rutile, ilmenite, and
magnetite are also present. The most common feldspar is perthite, but microcline and
albite can also be present (Figure 3b,c). Perthite displays various patterns, including veined,
flame, and patchy, and may contain small quartz crystals. Quartz can be found as interstitial
anhedral crystals and as fine, irregular grains that form micrographic intergrowths. In
samples from the pluton’s core, quartz exhibits undulatory extinction due to deformations.
Plagioclase occurs as fresh prismatic and tabular crystals, while biotite is the only mafic
mineral present and appears as subhedral ragged flakes.
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Figure 3. (a) Hand specimen shows the main pink to pale pink appearance of AFGs; (b) photomicro-
graph (XPL) showing the hypidiomorphic texture of AFGs; (c) back-scattered electron images (BSE)
showing the occurrence of plagioclase (Plg), K-feldspar (Kfs), and quartz (Qtz) as the main mineral
association of AFGs; (d) hand specimen exhibit the main reddish to pale grey appearance of AAGs;
(e) photomicrograph (XPL) displaying the intergrowth of biotite (Bt), arfvedsonite (Arfv) in AAGs
with a typical hypidiomorphic texture; (f) BSE images of a well-developed subhedral coarse grained
a arfvedsonite (Arfv) crystal within AAGs.

The AFGs and AAGs are almost identical, with the primary distinguishing feature
being the higher abundance of alkali-amphiboles in the AAGs. The AAGs are medium to
coarse-grained with a hypersolvus and hypidiomorphic granular texture (Figure 3d). They
consist of K-feldspars (41–56%), quartz (24–33%), plagioclase (2–8%), alkali-amphibole
(2–3%) and biotite (0.5–1%) (Figure 3e). Accessory minerals present include magnetite,
ilmenite, zircon, columbite, thorite, nioboaeschynite, and fluorite. The K-feldspars in
the AAGs include orthoclase perthite and microcline, and perthitic crystals can display
flame, patchy, and vein–perthitic intergrowth types. Quartz occurs as anhedral to euhedral
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interstitial crystals or as micrographic intergrowths with K-feldspars, and some quartz
crystals contain small inclusions of mafic minerals and feldspars. Plagioclase is represented
only by albite, occurring as subhedral laths or as inclusions in perthite and quartz crystals.
The mafic minerals in the AAG consist mainly of sodic amphibole and biotite, occurring as
subhedral to anhedral crystals interstitial to the essential minerals (Figure 3e,f). Zircon and
thorite occur as clear euhedral isolated crystals or as inclusions in the mafic minerals. A
few well-formed crystals of columbite and nioboaeschynite are found to be associated with
Fe-Ti oxides, while discrete fluorite crystals are observed to be filling the interstitial spaces
between other minerals.

Representative microprobe analyses (EPMA) of the major silicates and rare metal-
bearing minerals from the examined rocks are provided in Supplementary Tables S1–S8.

4.1.1. Feldspars

The chemical compositions of representative K-feldspars and plagioclase crystals are
provided in Supplementary Tables S1 and S2 and are illustrated in Figure 4a. The K-feldspar
content is represented by Or97–99 in AFGs and Or97–98 in AAGs, with high K2O contents
(16.21–16.64 wt.% in AFGs and 16.22–16.56 wt.% in AAGs). The concentration of CaO in all
the analyzed K-feldspar crystals is low, with a maximum value of 0.04 wt.%. Plagioclase in
both granitic varieties consist of pure albite compositions (AFG-Ab0–0.33 and AAG-An0–0.11).
Albite has Na2O contents ranging from 11.58 to 12.00 wt.% in AFGs and is tightly restricted
between 11.77 and 12.06 wt.% in AAGs. The CaO content in albite is less than 0.07 wt.%.
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Figure 4. (a) Feldspars composition of Mount El-Sibai granites plotted in the An-Ab-Or diagram
(data in mol.%); (b) Al2O3-FeOt diagram for the biotite [26]; (c) 10 * TiO2-(FeO + MnO)-MgO ternary
diagram discriminating between primary, re-equilibrated, and secondary biotite [27]; (d) classification
of the sodic amphiboles as per IMA norm [28], and (e) Na2O vs. FeO diagram discriminating between
primary and late-stage replacement of amphiboles [29].
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4.1.2. Biotite

Biotite is recorded in both granitic varieties with quite similar chemical composition.
The representative EMPA analyses are provided in Supplementary Table S3. In general,
biotite in both rock types has relatively high concentrations of FeOt (33.33–34.97 wt.%)
and TiO2 (2.88–3.23 wt.%), and low contents of Al2O3 (8.96–9.52 wt.%) and MnO (0.35–
0.55 wt.%). It is classified as Fe-biotite and falls within the alkaline granitic field, with a
typical magmatic origin (Figure 4b,c).

4.1.3. Amphibole

Amphibole is the predominant mafic mineral in the AAG. Representative EMPA
analyses are provided in Supplementary Table S4. It is classified as a Na-amphibole
with arfvedsonite composition (Figure 4d). All the analyzed grains contain high FeOt

(33.59–34.56 wt.%) and Na2O (7.26–7.76 wt.%), which are characteristic of primary igneous
amphiboles (Figure 4e).

4.1.4. Zircon (ZrSiO4) and Thorite (ThSiO4)

Representative EMPA analyses of zircon and thorite are presented in Supplementary
Table S5. In comparison to AFG, zircon from the AAG occasionally contains or is intergrown
with thorite (Figure 5a). Thorite is also intergrown or hosted by fluorite (Figure 5b). Both
types of granites exhibit almost similar zircon chemical compositions, with ZrO2 ranging
from 61.10 to 65.47 wt.% and HfO2 ranging from 1.60 to 4.88 wt.%. The ThO2/UO2 ratio
ranges from 0.2 to 2.4), typical of magmatic zircons [30] (Figure 6a). Thorite crystals exhibit
large variations in chemical composition [ThO2 (61.38–69.71 wt.%), UO2 (2.45–9.24 wt.%)
and Y2O3 (3.29–5.14 wt.%)].
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Figure 5. Back-scattered electron (BSE) images showing (a) the intergrown of zircon (Zrn), thor-
ite (Thrn) and magnetite (Mgt); (b) thorite partially hosted by fluorite (Fl) and K-feldspar (Kfs)
in AAGs; (c) aggregation of columbite (Col), nioboaeschynite (Nb-aesch) and magnetite (Mgt) be-
tween quartz (Qtz) and K-feldspar; (d) columbite intergrowth surrounded by nioboaeschynite
crystals; (e) nioboaeschynite crystallized between quartz and plagioclase (Plg) and (f) clear subhedral
columbite hosted by quartz in AAGs.
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Figure 6. (a) Composition of zircon plotting on ThO2/UO2 vs. SiO2 diagram, which discriminates
between magmatic and metamorphic zircon; (b) plotting of Mount El-Sibai nioboaeschynite compo-
sition on the Ti-Nb-Ta ternary diagram for the aeschynite group minerals (after Deliens, [31]); and
(c) plotting Plot of Ta/(Ta + Nb) vs. Mn/(Mn + Fe) ratios of columbite group minerals from Mount
El-Sibai AAGs in comparison with other rare metal-bearing granites from the Eastern Desert of Egypt
(after Sami et al., [32]). Symbol as in Figure 4.

4.1.5. Fluorite

Fluorite occurs as subhedral crystals in AAGs, often intergrown with thorite and other
REE-bearing phases such as nioboaeschynite (Figure 5b). It has an F compositional range
from 46.38 to 47.91% (Supplementary Table S6).

4.1.6. Nioboaeschynite-(Ce)

Nioboaeschynite is newly discovered in peralkaline granites from the Egyptian Eastern
Desert in general, and specifically in the El-Sibai AAG. It normally occurs as intergrown
crystals with columbite (Figure 5c,d) or as independent crystals between the major mineral
phases such as quartz and plagioclase (Figure 5e).

The representative EMPA analyses of nioboaeschynite are presented in Supplementary
Table S7 and Figure 6b. Niobium (Nb2O5 = 60.27–64.87 wt.%) and Ce (Ce2O3 = 17.26–
22.15 wt.%) are the main constituents (Figure 6b). Other important oxides are TiO2 (3.96–
5.0 wt.%), CaO (3.03–4.38 wt.%) and Ta2O3 (3.29–3.38 wt.%). Therefore, it is classified as
nioboaeschynite-Ce.

4.1.7. Columbite-(Fe)

Columbite is the main Nb-oxide in the orthorhombic columbite–tantalite group miner-
als (CGMs) which is usually found in rare-metal granites and pegmatites, but this mineral is
also common in F- and Li-rich peraluminous granitic systems and associated greisens [33].
The occurrence of CGM has attracted significant attention because they are minerals of
economic interest hosted in several metallogenetic provinces worldwide [5].

Columbite (for representative chemical analyses see Supplementary Table S8) is
the main Nb-Ta bearing phase in AAGs. It occurs in aggregation with nioboaeschynite
(Figure 5c,d) and/or as subhedral independent crystals between the main mineral phases
(Figure 5f). Columbite analyses are plotted together with other CGMs from different lo-
calities in the Egyptian Eastern Desert in the Mn/(Fe + Mn) (Mn#) vs. Ta/(Nb + Ta) (Ta#)
diagram (Figure 6c). The analyzed columbite occupy the left quarter of the quadrilateral
diagram, with low Mn# (0.11–0.19) and Ta# (>0.02) and are thus classified as columbite-(Fe).
It is worth noting that the columbite-(Fe) crystals from Mount El-Sibai AAGs display low
Ta/(Ta + Nb) ratios (up to 0.02) compared to those of similar columbite-(Fe) composition
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found in El-Ineigi and Abu Rushied [32], which are post-orogenic granitic plutons in the
Eastern Desert of Egypt (Figure 6c).

4.2. Whole-Rock Geochemical Characteristics

The chemical analyses of the studied samples and their calculated normative mineral
compositions are listed in Tables 1 and 2. These samples exhibit a highly evolved nature,
with SiO2 content ranging from 76.34% to 78.74% wt.%, and a high abundance of total
alkalis (Na2O + K2O = 8.29–9.78 wt.%). From the R1–R2 diagram (Figure 7a), the analyzed
samples are categorized within the alkali granite field. Using the FeOt/(FeOt + MgO)
vs. SiO2 relation [34], the AFGs and AAGs strictly fit well in the ferroan field (Figure 7b).
Moreover, the studied granites fall within the alkaline field in the diagram of Sylvester [35]
(Figure 7c). The peralkaline nature of the El-Sibai granites is confirmed by their molar
Al2O3/Na2O + K2O > 1 value (Figure 7d).

Table 1. Whole-rock geochemical analysis of major (wt.%) and trace (ppm) elements of Mount El-Sibai
granites.

Rock
Type Alkali-Feldspar Granites Alkali-Amphibole-Bearing Granites

No. SG1 SG5 SG10 SG11 SG12 SG14 SG28 SG30 SG31 SG37 SG39 SG41 SG43 SG46 SG47 SG49 SG50

SiO2 78.62 76.53 77.2 77.37 76.91 78.14 78.74 77.83 77.28 76.54 76.48 76.34 77.46 77.37 76.98 77.34 77.13
TiO2 0.06 0.08 0.06 0.06 0.06 0.06 0.04 0.06 0.05 0.09 0.08 0.06 0.04 0.05 0.06 0.07 0.05

Al2O3 11.16 11.65 12.22 11.94 11.61 11.79 11.46 11.56 11.5 11.34 11.94 11.37 11.19 11.34 11.54 12.09 11.54
Fe2O3 1.64 1.6 0.89 1.53 1.55 1.23 1.27 1.11 1.23 1.62 1.59 1.72 1.4 0.93 1.48 1.16 1.53
MnO 0.02 0.03 0.02 0.01 0.02 0.01 0.01 0.01 0.02 0.02 0.02 0.01 0.02 0.01 0.01 0.01 0.01
MgO 0.02 0.02 0.03 0.02 0.06 0.01 0.03 0.07 0.08 0.02 0.09 0.02 0.02 0.04 0.03 0.05 0.03
CaO 0.25 0.34 0.3 0.25 0.22 0.25 0.14 0.26 0.37 0.36 0.57 0.32 0.28 0.27 0.42 0.21 0.4

Na2O 4.31 4.48 4.68 4.47 4.64 4.64 4.5 4.64 4.34 4.92 4.8 5.15 4.79 4.98 4.46 4.49 4.46
K2O 4 4.53 4.23 4.55 4.17 3.99 3.84 3.65 4.27 4.5 4.31 4.22 4.01 4.8 4.42 4.45 4.41
P2O5 0.01 0.02 0.01 0.02 0.04 0.01 0.01 0.02 0.03 0.04 0.04 0.01 0.02 0.01 0.02 0.01 0.01
LOI 0.32 0.32 0.18 0.16 0.35 0.19 0.11 0.39 0.39 0.6 0.67 0.21 0.42 0.26 0.27 0.42 0.22
Total 100.41 99.6 99.82 100.38 99.63 100.32 100.15 99.6 99.56 100.05 100.59 99.43 99.65 100.06 99.69 100.3 99.79

Ba 35.6 96.3 18.6 31.6 23.9 17.8 34.1 23.9 23.8 113 110 11.7 22.1 21.5 20.3 18.7 22.5
Co 0.2 1.2 0.6 0.8 2 0.2 0.4 0.9 0.5 0.6 1.7 1.6 0.4 0.4 0.5 0.3 0.2
Cr 7.3 19.2 7.3 9.3 14 5.2 6.4 5.4 18.2 16.8 25.1 5.6 8.2 2.6 3.4 3.2 4.8
Cu 9 7.3 10.4 9.8 5.5 8 7.4 11.4 10.5 7.3 7.1 7.9 8.5 5.7 5.5 5.9 7.6
Ga 33.2 30 33.7 32.9 33 35.9 35.6 37.1 35 28.4 27.8 38.2 28.2 35.7 32.4 33.8 32.8
Nb 125 79 96 56 139 104 116 197 234 75 74 102 117 112 100 115 108
Ni 3.7 9.5 1.9 0.8 8.2 1.1 0.7 5.6 4.4 3.2 4.9 1.7 6.3 4.9 5.8 3.6 1.4
Pb 5.7 6.7 7.6 9.3 8.9 5.9 5.3 3.2 6.4 9.2 11.4 5.5 2.1 6.4 4.4 3.7 2.4
Rb 163 121 145 136 220 168 168 184 208 83 80 211 89 114 204 205 199
Sn 11 13.5 8.9 13.3 18.1 25.4 8.8 12.8 12.9 10.3 8.8 17 8.8 7.6 22.3 18.5 19.6
Sr 8.3 7.4 3.6 3 4.7 5 4.8 7.3 11.7 16.2 16.6 9.7 19.2 16.3 7 11.2 6.3
Ta 8.65 5.73 10.85 9.9 8.85 12.6 7.48 10.51 12.22 5.23 6.81 5.78 7.25 8.36 6.27 5.87 6.58
Th 14.1 13.9 12.3 18 15.7 20.1 18.4 20 23.5 9.4 8.2 11.3 16.5 14.1 12.5 17.7 13.9
U 7 5.8 5.8 7.2 8.5 5.7 5 13.3 14.7 4.8 4.3 5.3 5.5 6.8 4.3 7.7 6.1
V 2.4 1.7 0.4 1.7 0.8 1.1 0.4 0.3 2.5 3.2 3.8 1.2 1.9 1.6 2.1 0.9 1.2
Y 135 128 130 117 247 119 99 141 218 98 101 177 134 170 160 126 149

Zn 85 172 177 177 150 109 89 196 156 46 54 196 119 117 226 114 193
Zr 389 303 332 282 340 306 272 522 486 297 273 240 271 326 305 379 321
Hf 11.41 12.07 7.98 9.42 9.71 9.65 8.77 14.96 16.67 8.49 7.21 7.52 6.95 10.03 10.52 9.77 8.92
Cs 0.55 0.78 0.73 0.71 0.66 0.81 0.65 0.69 0.54 0.81 0.69 0.82 0.67 0.84 0.57 0.89 0.93

A/CNK 0.94 0.90 0.95 0.94 0.93 0.95 0.97 0.96 0.93 0.83 0.88 0.84 0.88 0.82 0.90 0.96 0.90
Rb/Sr 19.59 16.38 40.33 45.23 46.83 33.58 34.90 25.18 17.79 5.13 4.79 21.79 4.65 7.00 29.07 18.30 31.51
TZrn 847 810 829 807 824 823 818 878 865 796 793 774 801 808 812 841 818
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Table 2. REEs contents of the granitic rocks of Mount El-Sibai in the Central Eastern Desert of Egypt.

Rock Type Alkali-Feldspar Granites Alkali-Amphibole-Bearing Granites

Sample SG1 SG10 SG11 SG14 SG30 SG31 SG39 SG46 SG47 SG49 SG50

La 11.39 22.54 22.67 25.81 15.72 16.35 22.67 24.62 25.81 33.74 33.19
Ce 20.85 46.00 47.32 62.46 31.40 32.78 47.32 66.14 66.40 84.61 85.35
Pr 2.56 5.24 5.37 7.85 3.37 3.50 5.37 9.33 8.68 11.31 10.71
Nd 9.69 19.19 20.41 30.47 15.31 14.35 20.41 34.75 35.56 44.62 43.58
Sm 3.38 4.41 5.81 8.77 4.49 3.81 5.81 9.36 9.31 13.04 12.62
Eu 0.09 0.40 0.64 1.01 0.16 0.17 0.34 0.27 0.31 0.80 0.75
Gd 4.76 8.02 9.70 9.54 6.74 6.91 7.70 7.32 10.09 14.37 13.86
Tb 1.26 2.49 2.65 1.68 1.87 1.93 1.95 1.91 1.79 2.73 2.78
Dy 11.20 20.28 20.62 11.66 15.67 15.93 15.62 14.14 15.78 18.60 18.19
Ho 2.71 5.35 5.80 2.50 3.68 3.94 3.30 2.96 3.73 3.66 3.58
Er 9.65 16.92 17.45 7.90 14.13 13.93 12.45 9.90 10.23 11.17 10.77
Tm 1.68 2.90 3.01 1.11 2.34 2.24 1.95 2.06 1.99 1.51 1.48
Yb 11.64 20.35 20.68 8.26 15.60 16.09 15.68 11.78 13.88 10.10 10.14
Lu 1.66 2.77 2.94 1.25 2.19 2.25 1.74 1.79 1.62 1.48 1.47

Eu/Eu* 0.07 0.21 0.26 0.34 0.09 0.1 0.16 0.1 0.1 0.18 0.17
LaN/LuN 0.71 0.85 0.80 2.14 0.75 0.75 1.35 1.43 1.65 2.37 2.35

TE1,3 1.08 1.14 1.08 1.07 1.08 1.09 1.14 1.23 1.05 1.12 1.13
Total REE 93 177 185 180 133 134 162 196 205 252 248
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Figure 7. (a) R1–R2 diagram [36], which clearly indicate that Mount El-Sibai occupy the alkali granite
field; (b) SiO2 vs. FeOt/FeOt + MgO binary diagram showing that Mount El-Sibai are ferroan and
fall in the A-type granites field [34]; (c) major element classification diagram (SiO2 > 68%), after
Sylvester [35] showing the fields of alkaline, calc-alkaline and highly fractionated calc-alkaline rocks,
and (d) A/NK (molar Al2O3/Na2O + K2O) vs. A/CNK (molar Al2O3/CaO + Na2O + K2O) [37],
showing that almost all samples are of peralkaline nature.
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The primitive mantle-normalized multi-element diagram for the AFGs and AAGs is
shown in Figure 8a. It is clear that both granitic types show general similarities in their
patterns. They are enriched in some LILE (Rb, K, and Th) and HFSE (Ta, Pb, Zr, and Y),
but strongly depleted in Ba, Sr, P and Ti, consistent with an A-type granite geochemical
signature [38]. The chondrite-normalized REE patterns are presented in Figure 8b. The
AAG exhibits slightly higher REE abundances (196–252 ppm; average 225 ppm) compared
to the AFG (93–185 ppm; average 152 ppm). Additionally, the REE patterns of the AFG
show less fractionation [(La/Lu)N = 0.71–2.14] in comparison to the AAG [(La/Lu)N = 1.43–
2.37]. The Eu/Eu* values range from 0.07 to 0.34 in the AFG and reach extremely low
values (0.10–0.18) in the AAG, indicating significant fractionation of the alkali feldspar [3].
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5. Discussion

The preceding sections demonstrate that the Mount-El-Sibai granites consist of two
primary types of rocks: AFG, which constitutes most of the pluton, and AAG, found in
the outer regions. These rock varieties exhibit distinct compositions in terms of minerals
and overall chemical makeup. Hence, it is crucial to establish the genetic relationship
between these two facies. The presence of AAG, located at the periphery of the pluton and
displaying transitional contacts with the AFG, suggests that they were formed either during
the evolution of a substantial volume of magma or because of hydrothermal alteration
of the AFG. This scenario is comparable to typical post-collisional granites found in the
northern ANS, such as the zoned Katrina pluton in South Sinai [40] and the Abu-Diab
granites in CED [9].

5.1. Magmatic vs. Metasomatic Origin of Silicate and Ore Minerals

The granitic rocks under investigation display an intriguing characteristic whereby
they all consist of quartz, albite, K-feldspar, and biotite with similar chemical compositions.
However, arfvedsonite is exclusively found in the AAG samples. The mineral texture
and chemistry of Mount El-Sibai provide evidence that these rocks crystallized directly
from a granitic magma and underwent late- to post-magmatic fluid fractionation processes,
particularly in the AAG samples. The homogeneous composition and coexistence of
albite, biotite, and K-feldspar as well-formed crystals indicate a magmatic origin (Figure 3).
Additionally, the chemical composition of biotite and arfvedsonite supports their magmatic
origin (Figure 4c–e). The occurrence of fluorite exclusively in the AAG samples suggests, on
the other hand, the influence of late- to post-magmatic fluids during the evolution of AAG.
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Metasomatism by late- to post-magmatic fluids is also evidenced by the alteration of
a few albite and biotite crystals into sericite and chlorite, respectively. Furthermore, the
presence of fine-grained albite surrounding quartz and K-feldspar in the AAG samples
(Figure 3e) indicates the later formation of albite.

Based on textural characteristics, it is evident that the rare metal-bearing minerals
are primarily associated with fluorite, which is one of the last phases to crystallize. Flu-
orite typically occurs as irregular grains between the rock-forming minerals (Figure 5b),
indicating its magmatic origin. The presence of magmatic fluorite and the absence of
titanite in the AAG samples suggest that moderate concentrations of fluorine (<1 wt.%)
may be inherent characteristics of these magmas [41]. Experimental studies have shown the
magmatic crystallization of Nb-Ta-bearing minerals in granitic rocks [42]. The presence of
homogeneous anhedral to subhedral nioboaeschynite and columbite crystals as accessory
phases within and/or between the rock-forming minerals further suggests their primary
magmatic crystallization (Figure 5c–e).

Experimental data indicate that columbite can crystallize early from a magma melt
with MnO + FeO contents >0.05 wt.% and Nb concentrations of approximately 70–100 ppm
at relatively low temperatures (~600 ◦C) [42]. Moreover, magmatic systems can become
enriched in F and Li at crystallization temperatures of around 650 ◦C [43]. Consequently, the
AAG samples, with Nb concentrations of 100–117 ppm and relatively high MnO + Fe2O3
contents (0.94–1.74 wt.%), at slightly higher temperatures (TZr = 830 ◦C and TAp = 795 ◦C,
on average; Table 1), indicate early saturation of magmatic columbite in the AAG magma.

Zircon is considered an excellent indicator of rare metals such as Nb, Ta, Y, and U [44].
In comparison to the AFG samples, zircon in the AAG samples spatially associates with
thorite, fluorite, and columbite (Figure 5), suggesting its crystallization from a highly
fractionated fluid-rich magma relative to the AFG magma. The Th/U ratios are also
employed as an indicator of zircon type, where magmatic zircon has a ratio of 0.32–0.70,
while hydrothermal zircon has a ratio of <0.1 [30]. Zircon from both types of granitic rocks
exhibits Th/U ratios between 0.17 and 2.58 (Supplementary Table S5), confirming their
magmatic origin.

5.2. Condition of Magma Crystallization

The granitic rocks from Mount El-Sibai exhibit a hypersolvus nature, indicating that
they were formed at high temperatures and under low water pressure conditions. This
characteristic is consistent with other alkaline rocks that are typically emplaced at relatively
shallow depths [45].

In controlled laboratory conditions, alkali-amphibole (arfvedsonite) has been observed
to crystallize from magma at pressures of approximately 150 MPa when the melt com-
position contains more than 4 wt.% H2O [46]. Furthermore, the presence of magmatic
fluids rich in fluorine aids in stabilizing alkali-amphiboles, particularly arfvedsonite, at
lower pressures [47]. Temperature measurements of Mount El-Sibai magmas have been
determined using the zircon-saturation thermometer model of Gervasoni et al. [48]. The
zircon-saturation temperatures (TZrn) range from 793 to 878 ◦C for AFGs and from 774
to 841 ◦C for AAGs (Table 1). These elevated TZrn in the studied granites indicate that
the magma from which the AFG and AAG crystallized was significantly hot, promoting
the saturation of zircon. The calculated TZrn surpass the solidus temperature (700 ◦C)
of granitic systems characterized by moderate H2O content and low concentrations of F,
B, and Li [49]. Consequently, the calculated temperatures should be considered as the
minimum temperatures for the original magma.

5.3. Petrogenetic Type, Tectonic Setting, and Magma Type

It is difficult to distinguish A-type granites from highly fractionated I- and S-type
granites with SiO2 < 72 wt.% due to their similarity in both chemical and mineralogical
composition [50,51]. However, several characteristics, such as the high 10,000 Ga/Al ratios
(<4), and Na2O + K2O/CaO ratios (<10), and peralkaline natures, demonstrate that the
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Mount El-Sibai granites show an affinity to A-type granites, rather than fractionated I-type
and S-type granites [51,52]. This is further supported by the following: (1) the slightly
higher alkali contents and large ion lithophile elements (LILE) abundances, including Rb,
Cs, and K (Table 1), enrichment in some high field strength elements (HFSEs; e.g., Ga, Zn,
Y, Ta and Nb) and strong depletion of Ba, Sr, Ti, and P (Figure 8a,b), which is consistent
with the element compositional patterns of A-type granites [38]; (2) in the discrimination
diagrams of Na2O + K2O/CaO, K2O/MgO, Nb and Eu/Eu* vs. 10,000 Ga/Al (Figure 9a–d),
they all plot in the A-type granite field [50]; and (3) the granitoids occupy the field of A-type
granites in other geochemical diagrams (Figure 7b).
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Based on the Zr/Hf ratio in zircon, A-type granites can be subdivided into three
main categories: (1) normal granites with Zr/Hf > 55; (2) moderately fractionated gran-
ites with Zr/Hf varying between 55 and 25; and (3) strongly fractionated granites with
Zr/Hf < 25 [53]. Accordingly, AFG (avg. Zr/Hfzircon = 66) is classified as a normal granite,
while AAG (Avg. Zr/Hfzircon = 55) is a moderately fractionated granite (Supplementary
Table S5).

On the tectonic discrimination diagram of Y vs. Nb and Yb = Ta vs. Rb by Pearce
et al. [54], the geochemical affinity of the studied granites aligns with the within-plate
field (Figure 10a,b). The plots on the primitive mantle normalized diagrams (Figure 8a)
demonstrate enrichment in both large ion lithophile elements (LILE) and HFSE with an
absence of negative Nb anomalies, indicating the formation of Mount El-Sibai in a within-
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plate tectonic environment [54]. In synthesis, the geochemical data confirm that the Mount
El-Sibai granites are within-plate anorogenic granites, which are commonly associated with
crustal extension and/or rifting.
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The composition of feldspars, amphiboles, and biotite in the studied granites also
provide criteria for their tectono-magmatic affiliation, confirming and refining the inferences
from whole-rock geochemistry. The alkali feldspars show no significant zoning, suggesting
near-equilibrium crystallization conditions. They exhibit lower CaO/(Na2O + K2O) ~ 0.006
ratios compared to their host rocks (~0.06), indicating the alkaline–peralkaline nature of
these rocks. Additionally, the AAG contains sodic amphiboles, indicating a peralkaline
tendency. The composition of igneous biotite can be used to identify the nature of the host
magmas. In the case of the analyzed biotite in both granitic types, they exhibit extremely
high FeO content ranging from 33.33 to 34.97 wt.% with an average of 34.26 wt.% in AFGs
and from 33.98 to 34.42 with an average of 34.27 in AAGs. These values closely resemble
those found in biotite from alkaline, anorogenic granites (average 30.06 wt.%) (Figure 4b).

In general, peralkaline A-type granites require significantly higher temperatures
during their formation compared to other granitoids, indicating the involvement of mantle-
derived magmas in their genesis [45]. Despite the overall A-type affinity of Mount El-Sibai
granites, assessing the relative contributions from mantle and crustal magmatic sources is
challenging due to the juvenile nature of the Nubian Shield [5].

5.4. Petrogenesis of Mount El-Sibai Granites

Various petrogenetic models have been proposed to explain the formation of A-type
rocks in general [55] and in the ANS in particular [56–58]. However, no single model
adequately explains the wide range of chemical compositions observed among these
granitic rocks. The substantial variations in isotope ratios and major and trace element
concentrations strongly suggest that A-type granitic rocks originate from diverse processes
and sources [59,60]. Some suggested models for the generation of A-type rocks in the ANS
include fractional crystallization of mafic magma derived from the mantle [61], partial
melting of different pre-existing crustal rocks [62], and a combination of mantle-derived
sources with crustal materials [63]. The field relationships, chemical compositions, and
petrological characteristics of Mount El-Sibai AFGs and AAGs provide evidence for their
genetic association. Fieldwork observations indicate a sequence of intrusion in Mount
El-Sibai granites, suggesting emplacement in two phases. However, the presence of both
gradational and sharp contacts between the phases implies a short time interval between
their emplacement before the complete crystallization of the first phase AFG (Figure 2a).
The absence of compositional gaps in major and trace elements compositions (Tables 1
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and 2), suggests that the Mount El-Sibai granites share a common parental magma that
underwent magmatic fractionation processes.

The Mount El-Sibai granites exhibit characteristics of highly fractionated A-type
granite, including elevated concentrations of Rb (80–220 ppm), Nb (56–234 ppm), Y
(98–247 ppm), Zr (240–522 ppm), and Ta (5.2–12.6 ppm), but lower concentrations of
Ba (12–113 ppm) and Sr (3–19 ppm) (Table 1). The geological and geochemical data sug-
gest that these granites were emplaced in a post-collisional within-plate tectonic setting
(Figure 10a,b). According to the Y-Nb-3Ga discrimination ternary diagram by Eby [52],
the Mount El-Sibai granites almost fall within the A2 field (Figure 11a). This is further
supported by the molar (Na2O + K2O)—vs. Fe2O3* × 5 vs. (CaO + MgO) × 5 ternary dia-
gram by Grebennikov [64], where all the samples align with the A2-type field (Figure 11b).
Therefore, the studied A-type granites are believed to have formed through partial melting
of pre-existing crustal rocks with a contribution from the mantle. The mantle signature in
the A-type granites of the ANS is likely due to the partial melting of juvenile continental
crust [6].
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Figure 11. (a) Y-Nb-3Ga ternary plot [52]; A1 = A-type granitoids with an ocean island basalt–type
source; A2 = A-type granitoids with crust-derived magma, and (b) Na2O + K2O vs.—Fe2O3* × 5 vs.
(CaO + MgO) × 5 (mol. quant.) [64]. A1 Field of silicic rocks of within-plate geodynamic settings:
oceanic islands and continental rifts; A2, felsic igneous rock associations of intracontinental and
continental-margin geodynamic settings.

The low concentrations of Co (0.20–2.0 ppm), Ni (0.7–9.5 ppm), and V (0.3–3.8 ppm)
provide (Table 1), evidence against the hypothesis of extensive fractional crystallization
of mantle-derived mafic magma. Furthermore, the abundance of felsic rocks in Mount
El-Sibai cannot be explained solely by the fractional crystallization of mafic magma. Nu-
merous geological, geochemical, and isotopic characteristics of the A-type rocks of the ANS
contradict the idea of a mantle source [9,65].

Considering the fact that mantle materials typically exhibit very low Rb/Sr ratios
ranging from 0.1 to 0.01 [66], while the lower and middle continental crusts have Rb/Sr
ratios of 0.12 and 0.22, respectively [67], the elevated Rb/Sr ratios (4.6–46.8) observed in the
studied granites argue against pure mantle origin and suggest a significant contribution
of crustal materials to their formation. Plotting the samples on the Nb/Y versus Rb/Y
diagram (Figure 12a) reveals that they align closely with values characteristic of the lower-
to-upper crust, implying that melting and subsequent differentiation of crustal magmatic
sources could account for the generation of the Mount El-Sibai granites. Therefore, it can
be argued that these granites are predominantly derived from crustal magmatic sources
with a minor contribution from the mantle, which likely provided the necessary heat for
crustal melting.

The relatively high concentrations of K2O in the granites are more likely a result of
fractionation dominated by plagioclase and/or partial melting of crustal rocks, rather than
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being derived from the mafic melts originating from the mantle. Furthermore, the sam-
ples show linear relationships in the (Ce/Zr)–Ce and (La/Hf)–La diagrams (Figure 12b,c),
suggesting a petrogenetic process involving partial melting rather than fractional crystal-
lization [68]. Therefore, Mount El-Sibai granites were most likely generated through partial
melting of a juvenile crustal source followed by a magmatic fractionation process.
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adapted from Rudnick and Gao [70], while the N-MORB (normal mid-ocean ridge basalt) value is
from Sun and McDonough [39], (b) Ce/Zr vs. Ce diagram [68], (c) La/Hf vs. La diagram [68] and
(d) ternary diagram of Al2O3/(FeOt + MgO) vs. 3*CaO vs. 5*(K2O/Na2O) [71].

Possible crustal sources for the parental melt of the Mount El-Sibai granites include
Neoproterozoic upper crustal rocks such as schists, gneisses, metagabbro-diorites, and
I-type calc-alkaline granitoids. The presence of gneissic granites in the core of the El-Sibai
intrusion further supports the idea of their origin through partial melting of a juvenile
crustal source. Plotting the samples on a tonalites source diagram (Figure 12d) further
confirms their derivation from the melting of an intermediate crustal magma source [71].
This is consistent with experimental studies indicating that dehydration melting of calc-
alkaline tonalite at 950 ◦C and 0.4 GPa can produce melts with major and trace element
characteristics resembling those of A-type magmas [72]. The intrusion of El-Sibai granites
within the older tonalite–granodiorite association also provide a support for intermediate
crustal magma source.
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The available geochemical data and the consistent patterns of normalized trace ele-
ments and REEs (Figure 8a,b) support the hypothesis of magmatic differentiation from a
shared parental magma. The primary fractionated phases include feldspars, with minor
contributions from mafic minerals, apatite, and Fe-Ti oxides. The multielement spider
diagram (Figure 8a) exhibit significant depletion in Eu, Ba, and Sr, which may indicate
feldspars fractionation or may reflect retention of plagioclase in the source during the
partial melting event. However, the fractionation of feldspars is evident from the Sr versus
Rb/Sr plot (Figure 13a), where a decrease in CaO and Na2O with increasing SiO2 aligns
with plagioclase fractionation. The role of feldspar fractionation is also indicated by co-
variation in Ba vs. Rb (Figure 13b), where Ba decrease with increasing Rb, enhancing the
fractionation of both plagioclase and K-feldspar during the evolution of granites. The highly
fractionated REE patterns observed in the Mount El-Sibai granites (Figure 8b), particularly
the prominent negative Eu anomalies (Eu/Eu* = 0.07–0.34), provide compelling evidence
for fractionation of feldspars. Furthermore, the conspicuous negative anomalies of Eu, Ba,
P, Zr, and Ti (Figure 8a) suggest minor fractionation of apatite, zircon, and Fe-Ti oxide.
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Figure 13. (a) Sr vs. Rb/Sr diagram, and (b) Ba vs. Rb diagram, showing that fractionation of
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The proposed model depicting the evolution of A-type rocks in the Mount El-Sibai
region is illustrated in Figure 14. Initially, during the first stage, mantle-derived magma
is generated as a consequence of lithospheric delamination caused by extension. This
extension results in the upwelling of asthenospheric material, triggering extensive melting
of certain sections of the lithospheric mantle. Additionally, the release of lithospheric
extension pressure at depth leads to the influx of volatiles from deeper sources into the
crust. The introduction of a volatile phase derived from the mantle brings additional
heat, which lowers the melting temperature of rocks and initiates partial melting [74].
Shear zones and large-scale faults within the continental interior facilitate the ascent of
the produced magma into the middle and upper crust, promoting the process of partial
melting. Subsequently, the mingling and mixing of magmas give rise to magmatism with
intermediate compositions that can evolve into felsic magmatism characterized by granitic
compositions. The emplacement of the Mount El-Sibai granites most likely occurred
following the termination of the Pan-African orogeny, along with the reactivation of Pan-
African fractures. Quartz veins and shear zones cutting across the early phase of the Mount
El-Sibai intrusion support an extensional tectonic regime during the emplacement of the
studied A-type granites. The proposed geotectonic model for the generation of the Mount
El-Sibai shares similarities with the lithospheric delamination model suggested by several
authors to explain the evolution of the post-collisional alkaline/peralkaline phase in the
ANS [75,76].
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5.5. The Role of Fluids on Rare-Metal Mineralization

It is worth noting that the fractionation of K-feldspar and/or mica alone cannot fully
explain the various geochemical characteristics of Mount El-Sibai, such as the enrichment
in most highly incompatible elements (Nb, Ta, U, Th, and Y) and the significant depletion
in Sr and Ba. By applying the quantification method proposed by Irber [77], both granitic
types exhibit a slightly elevated tetrad effect values (TE1,3 > 1; Table 2). The occurrence
of the tetrad effect also appeared on the granite’s REE pattern (Figure 8b). This suggests
the influence of magmatic–fluid interaction processes in the formation of the Mount El-
Sibai granites [78–80]. Previous studies by London et al. [81] have demonstrated that the
incorporation of volatile elements like Li, F, and P in the magmatic system can have a
significant impact on the solubility of Nb and Ta in the melt. In comparison to the AFG,
the AAG meets the criteria of fluorine-rich granites found worldwide [82]. Therefore,
the presence of magmatic fluorite in the AAG suggests that the high concentrations of
Ta, Y, U, Th, and Nb are likely associated with the enrichment of volatile elements such
as Li, F, and P during the magmatic evolution of the AAG. These volatile elements can
form stable alkali–fluoro complexes that incorporate HFSEs within the AAG [82]. The
elevated activity of F can also enhance magmatic differentiation by promoting a higher
rate of fractional crystallization [5]. The occurrence of fluorite in the AAG samples clearly
indicates the significant role of magmatic volatiles/fluids in the formation of these granites.
The substantial presence of fluorine in the magma acts as a complexing agent, increasing the
solubility of HFSEs, including Y, Nb, and Ta, leading to their incompatible behavior during
magmatic differentiation. Consequently, the generated peralkaline granitic magma becomes
enriched with ore metals such as Y, Nb, and Ta hosted by rare metal-bearing minerals (e.g.,
columbite, nioboaeschynite, zircon, and thorite) through prolonged fractionation processes.

6. Conclusions

The Mount El-Sibai granitic pluton is a prominent mountainous region in the central
Eastern Desert of Egypt. The pluton primarily consists of alkali-feldspar granites (AFGs)
with small amounts of alkali-amphibole-bearing granites (AAGs). The AFGs and AAGs
are almost identical, with the primary distinguishing feature being the higher abundance
of alkali-amphiboles in the AAG. The AAGs host special rare metal-bearing minerals (e.g.,
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zircon, columbite, thorite, nioboaeschynite, and fluorite). Biotite in both rocks is classified
as Fe-biotite with a typical alkaline magmatic signature. Amphiboles are classified as
Na-amphibole with arfvedsonite composition. Columbite and nioboaeschynite are the
main Nb-Ta bearing phase in AAGs. They occur as intergrown crystals or as independent
crystals between the major mineral phases such as quartz and plagioclase. Columbite has a
typical ferrocolumbite composition.

Both granites exhibit a highly evolved and peralkaline nature. They are enriched
in some LILE (Rb, K, and Th) and HFSE (Ta, Pb, Zr, and Y), but strongly depleted in
Ba, Sr, P and Ti, with prominent negative Eu anomaly, consistent with an A-type granite
geochemical signature. The texture and chemistry of minerals provide evidence that
these rocks crystallized directly from a granitic magma and later underwent late- to post-
magmatic fluid fractionation processes, particularly in the AAG samples. The elevated TZrn
values indicate that the magma from which the granites were formed, was significantly
hot. Geochemically, the granites are enriched in both LILEs and HFSEs with an absence of
negative Nb anomalies, confirming their formation in a within-plate anorogenic tectonic
setting associated with crustal extension and/or rifting.

We argue that the studied granites have been formed through partial melting of
pre-existing intermediate crustal rocks. The geochemical data support the formation of
Mount El-Sibai by magmatic differentiation from a common parental magma. The primary
fractionated phases include feldspars, with minor contributions from mafic minerals,
apatite, and Fe-Ti oxides. The lithospheric delamination process caused the upwelling of
asthenospheric material and triggered extensive melting of the overlaying lithospheric
mantle material. This leads to the influx of volatiles from deeper sources into the crust.
These volatiles, especially fluorine-formed complexes of rare metal elements (e.g., Nb,
Ta, Sn and REEs), preserved the melt structure and thus were not included in the early
fractional crystallization. Consequently, the generated peralkaline granitic magma becomes
enriched with ore metals such as Y, Nb, and Ta hosted by rare metal-bearing minerals
(e.g., columbite, nioboaeschynite, zircon, and thorite) through extensive and prolonged
fractionation processes.
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