2,171 research outputs found

    H2 reformation in post-shock regions

    Full text link
    H2 formation is an important process in post-shock regions, since H2 is an active participant in the cooling and shielding of the environment. The onset of H2 formation therefore has a strong effect on the temperature and chemical evolution in the post shock regions. We recently developed a model for H2 formation on a graphite surface in warm conditions. The graphite surface acts as a model system for grains containing large areas of polycyclic aromatic hydrocarbon structures. Here this model is used to obtain a new description of the H2 formation rate as a function of gas temperature that can be implemented in molecular shock models. The H2 formation rate is substantially higher at high gas temperatures as compared to the original implementation of this rate in shock models, because of the introduction of H atoms which are chemically bonded to the grain (chemisorption). Since H2 plays such a key role in the cooling, the increased rate is found to have a substantial effect on the predicted line fluxes of an important coolant in dissociative shocks [O I] at 63.2 and 145.5 micron. With the new model a better agreement between model and observations is obtained. Since one of the goals of Herschel/PACS will be to observe these lines with higher spatial resolution and sensitivity than the former observations by ISO-LWS, this more accurate model is very timely to help with the interpretation of these future results.Comment: 12 pages, 3 figures, 1 table, accepted in MNRAS Letter

    On the hierarchical classification of G Protein-Coupled Receptors

    Get PDF
    Motivation: G protein-coupled receptors (GPCRs) play an important role in many physiological systems by transducing an extracellular signal into an intracellular response. Over 50% of all marketed drugs are targeted towards a GPCR. There is considerable interest in developing an algorithm that could effectively predict the function of a GPCR from its primary sequence. Such an algorithm is useful not only in identifying novel GPCR sequences but in characterizing the interrelationships between known GPCRs. Results: An alignment-free approach to GPCR classification has been developed using techniques drawn from data mining and proteochemometrics. A dataset of over 8000 sequences was constructed to train the algorithm. This represents one of the largest GPCR datasets currently available. A predictive algorithm was developed based upon the simplest reasonable numerical representation of the protein's physicochemical properties. A selective top-down approach was developed, which used a hierarchical classifier to assign sequences to subdivisions within the GPCR hierarchy. The predictive performance of the algorithm was assessed against several standard data mining classifiers and further validated against Support Vector Machine-based GPCR prediction servers. The selective top-down approach achieves significantly higher accuracy than standard data mining methods in almost all cases

    Coronal properties of planet-bearing stars

    Full text link
    Do extrasolar planets affect the activity of their host stars? Indications for chromospheric activity enhancement have been found for a handful of targets, but in the X-ray regime, conclusive observational evidence is still missing. We want to establish a sound observational basis to confirm or reject major effects of Star-Planet Interactions (SPI) in stellar X-ray emissions. We therefore conduct a statistical analysis of stellar X-ray activity of all known planet-bearing stars within 30pc distance for dependencies on planetary parameters such as mass and semimajor axis. We find that in our sample, there are no significant correlations of X-ray luminosity or the activity indicator L_X/L_bol with planetary parameters which cannot be explained by selection effects. Coronal SPI seems to be a phenomenon which might only manifest itself as a strong effect for a few individual targets, but not to have a major effect on planet-bearing stars in general.Comment: accepted by A&

    Differential modulation of annexin I binding sites on monocytes and neutrophils.

    Get PDF
    Specific binding sites for the anti-inflammatory protein annexin I have been detected on the surface of human monocytes and polymorphonuclear leukocytes (PMN). These binding sites are proteinaceous in nature and are sensitive to cleavage by the proteolytic enzymes trypsin, collagenase, elastase and cathepsin G. When monocytes and PMN were isolated independently from peripheral blood, only the monocytes exhibited constitutive annexin I binding. However PMN acquired the capacity to bind annexin I following co-culture with monocytes. PMN incubation with sodium azide, but not protease inhibitors, partially blocked this process. A similar increase in annexin I binding capacity was also detected in PMN following adhesion to endothelial monolayers. We propose that a juxtacrine activation rather than a cleavage-mediated transfer is involved in this process. Removal of annexin I binding sites from monocytes with elastase rendered monocytes functionally insensitive to full length annexin I or to the annexin I-derived pharmacophore, peptide Ac2-26, assessed as suppression of the respiratory burst. These data indicate that the annexin I binding site on phagocytic cells may have an important function in the feedback control of the inflammatory response and their loss through cleavage could potentiate such responses

    Advanced Software for Analysis of High-Speed Rolling-Element Bearings

    Get PDF
    COBRA-AHS is a package of advanced software for analysis of rigid or flexible shaft systems supported by rolling-element bearings operating at high speeds under complex mechanical and thermal loads. These loads can include centrifugal and thermal loads generated by motions of bearing components. COBRA-AHS offers several improvements over prior commercial bearing-analysis programs: It includes innovative probabilistic fatigue-life-estimating software that provides for computation of three-dimensional stress fields and incorporates stress-based (in contradistinction to prior load-based) mathematical models of fatigue life. It interacts automatically with the ANSYS finite-element code to generate finite-element models for estimating distributions of temperature and temperature-induced changes in dimensions in iterative thermal/dimensional analyses: thus, for example, it can be used to predict changes in clearances and thermal lockup. COBRA-AHS provides an improved graphical user interface that facilitates the iterative cycle of analysis and design by providing analysis results quickly in graphical form, enabling the user to control interactive runs without leaving the program environment, and facilitating transfer of plots and printed results for inclusion in design reports. Additional features include roller-edge stress prediction and influence of shaft and housing distortion on bearing performance

    Complex Langevin Equation and the Many-Fermion Problem

    Get PDF
    We study the utility of a complex Langevin (CL) equation as an alternative for the Monte Carlo (MC) procedure in the evaluation of expectation values occurring in fermionic many-body problems. We find that a CL approach is natural in cases where non-positive definite probability measures occur, and remains accurate even when the corresponding MC calculation develops a severe ``sign problem''. While the convergence of CL averages cannot be guaranteed in principle, we show how convergent results can be obtained in three examples ranging from simple one-dimensional integrals over quantum mechanical models to a schematic shell model path integral.Comment: 19 pages, 10 PS figures embedded in tex

    Fe XIII coronal line emission in cool M dwarfs

    Full text link
    We report on a search for the Fe xiii forbidden coronal line at 3388.1 \AA in a sample of 15 M-type dwarf stars covering the whole spectral class as well as different levels of activity. A clear detection was achieved for LHS 2076 during a major flare and for CN Leo, where the line had been discovered before. For some other stars the situation is not quite clear. For CN Leo we investigated the timing behaviour of the Fe xiii line and report a high level of variability on a timescale of hours which we ascribe to microflare heating.Comment: 13 pages, 10 figure

    Formation of Hydrogen, Oxygen, and Hydrogen Peroxide in Electron Irradiated Crystalline Water Ice

    Full text link
    Water ice is abundant both astrophysically, for example in molecular clouds, and in planetary systems. The Kuiper belt objects, many satellites of the outer solar system, the nuclei of comets and some planetary rings are all known to be water-rich. Processing of water ice by energetic particles and ultraviolet photons plays an important role in astrochemistry. To explore the detailed nature of this processing, we have conducted a systematic laboratory study of the irradiation of crystalline water ice in an ultrahigh vacuum setup by energetic electrons holding a linear energy transfer of 4.3 +/- 0.1 keV mm-1. The irradiated samples were monitored during the experiment both on line and in situ via mass spectrometry (gas phase) and Fourier transform infrared spectroscopy (solid state). We observed the production of hydrogen and oxygen, both molecular and atomic, and of hydrogen peroxide. The likely reaction mechanisms responsible for these species are discussed. Additional formation routes were derived from the sublimation profiles of molecular hydrogen (90-140 K), molecular oxygen (147 -151 K) and hydrogen peroxide (170 K). We also present evidence on the involvement of hydroxyl radicals and possibly oxygen atoms as building blocks to yield hydrogen peroxide at low temperatures (12 K) and via a diffusion-controlled mechanism in the warming up phase of the irradiated sample.Comment: ApJ, March 2006, v639 issue, 43 pages, 7 figure
    • …
    corecore