26 research outputs found

    Photoperiod affects the phenotype of mitochondrial complex I mutants

    Get PDF
    Plant mutants for genes encoding subunits of mitochondrial Complex I (CI, NADH:ubiquinone oxidoreductase), the first enzyme of the respiratory chain, display various phenotypes depending on growth conditions. Here, we examined the impact of photoperiod, a major environmental factor controlling plant development, on two Arabidopsis thaliana CI mutants: a new insertion mutant interrupted in both ndufs8.1 and ndufs8.2 genes encoding the NDUFS8 subunit, and the previously characterized ndufs4 CI mutant. In long day (LD) condition, both ndufs8.1 and ndufs8.2 single mutants were indistinguishable from Col-0 at phenotypic and biochemical levels, whereas the ndufs8.1 ndufs8.2 double mutant was devoid of detectable holo-CI assembly/activity, showed higher AOX content/activity and displayed a growth-retardation phenotype similar to that of the ndufs4 mutant. Although growth was more affected in ndufs4 than ndufs8.1 ndufs8.2 under short day (SD) condition, both mutants displayed a similar impairment of growth acceleration after transfer to LD as compared to the WT. Untargeted and targeted metabolomics showed that overall metabolism was less responsive to the SD-to-LD transition in mutants than in the WT. The typical LD acclimation of carbon, nitrogen-assimilation and redox-related parameters was not observed in ndufs8.1 ndufs8. Similarly, NAD(H) content, that was higher in SD condition in both mutants than in Col-0, did not adjust under LD. We propose that altered redox homeostasis and NAD(H) content/redox state control the phenotype of Complex I mutants and photoperiod acclimation in Arabidopsis

    Influence of mitochondrial genome rearrangement on cucumber leaf carbon and nitrogen metabolism

    Get PDF
    The MSC16 cucumber (Cucumis sativus L.) mitochondrial mutant was used to study the effect of mitochondrial dysfunction and disturbed subcellular redox state on leaf day/night carbon and nitrogen metabolism. We have shown that the mitochondrial dysfunction in MSC16 plants had no effect on photosynthetic CO2 assimilation, but the concentration of soluble carbohydrates and starch was higher in leaves of MSC16 plants. Impaired mitochondrial respiratory chain activity was associated with the perturbation of mitochondrial TCA cycle manifested, e.g., by lowered decarboxylation rate. Mitochondrial dysfunction in MSC16 plants had different influence on leaf cell metabolism under dark or light conditions. In the dark, when the main mitochondrial function is the energy production, the altered activity of TCA cycle in mutated plants was connected with the accumulation of pyruvate and TCA cycle intermediates (citrate and 2-OG). In the light, when TCA activity is needed for synthesis of carbon skeletons required as the acceptors for NH4+ assimilation, the concentration of pyruvate and TCA intermediates was tightly coupled with nitrate metabolism. Enhanced incorporation of ammonium group into amino acids structures in mutated plants has resulted in decreased concentration of organic acids and accumulation of Glu

    Does the alternative respiratory pathway offer protection against the adverse effects resulting from climate change?

    Get PDF
    Elevated greenhouse gases (GHGs) induce adverse conditions directly and indirectly, causing decreases in plant productivity. To deal with climate change effects, plants have developed various mechanisms including the fine-tuning of metabolism. Plant respiratory metabolism is highly flexible due to the presence of various alternative pathways. The mitochondrial alternative oxidase (AOX) respiratory pathway is responsive to these changes, and several lines of evidence suggest it plays a role in reducing excesses of reactive oxygen species (ROS) and reactive nitrogen species (RNS) while providing metabolic flexibility under stress. Here we discuss the importance of the AOX pathway in dealing with elevated carbon dioxide (CO), nitrogen oxides (NOx), ozone (O), and the main abiotic stresses induced by climate change

    Impaired cyclic electron flow around Photosystem I disturbs high-light respiratory metabolism.

    Get PDF
    The cyclic electron flow around photosystem I (CEF-PSI) increases ATP/NADPH production in the chloroplast, acting as an energy balance mechanism. Higher export of reducing power from the chloroplast in CEF-PSI mutants has been correlated with higher mitochondrial alternative oxidase (AOX) capacity and protein amount under high-light (HL) conditions. However, in vivo measurements of AOX activity are still required to confirm the exact role of AOX in dissipating the excess of reductant power from the chloroplast. Here, CEF-PSI single and double mutants were exposed to short-term HL conditions in Arabidopsis (Arabidopsis thaliana). Chlorophyll fluorescence, in vivo activities of the cytochrome oxidase (ν(cyt)) and AOX (ν(alt)) pathways, levels of mitochondrial proteins, metabolite profiles, and pyridine nucleotide levels were determined under normal growth and HL conditions. ν(alt) was not increased in CEF-PSI mutants, while AOX capacity was positively correlated with photoinhibition, probably due to a reactive oxygen species-induced increase of AOX protein. The severe metabolic impairment observed in CEF-PSI mutants, as indicated by the increase in photoinhibition and changes in the levels of stress-related metabolites, can explain their lack of ν(alt) induction. By contrast, ν(cyt) was positively correlated with photosynthetic performance. Correlations with metabolite changes suggest that ν(cyt) is coordinated with sugar metabolism and stress-related amino acid synthesis. Furthermore, changes in glycine-serine and NADH-NAD(+) ratios were highly correlated to ν(cyt). Taken together, our results suggest that ν(cyt) can act as a sink for the excess of electrons from the chloroplast, probably via photorespiratory glycine oxidation, thus improving photosynthetic performance when ν(alt) is not induced under severe HL stress
    corecore