1,438 research outputs found

    No. 07: The Urban Food System of Mexico City, Mexico

    Get PDF
    This report provides an overview of Greater Mexico City and its food system. The city’s history, demographic characteristics, geography and economy are first discussed. The city’s urban food system and urban food security are then examined with a particular focus on formal and informal food retail, food expenditure patterns, and policies to combat hunger and food insecurity. Meeting the daily food demands of Mexico City’s over 20 million inhabitants requires the agricultural production of Mexico’s rural areas, its fishing industry and food imports. Food products arrive in the city from around the country in a combination of traditional and highly sophisticated modern systems of food supply and distribution. Structural changes in recent decades have led to modifications in the systems of supply, distribution and food consumption with vertically integrated companies now controlling aspects of the food chain. The system of supply and marketing of food products is also characterized by competition between public markets, large wholesale and retail companies, and neighbourhood convenience stores. While levels of household food insecurity (undernutrition) are lower than in other global cities of the South, Mexico City faces an epidemic of overnutrition, obesity and non-communicable diseases

    Abnormalities on 1q and 7q are associated with poor outcome in sporadic Burkitt's lymphoma. A cytogenetic and comparative genomic hybridization study

    Get PDF
    Comparative genomic hybridization (CGH) studies have demonstrated a high incidence of chromosomal imbalances in non-Hodgkin's lymphoma. However, the information on the genomic imbalances in Burkitt's Lymphoma (BL) is scanty. Conventional cytogenetics was performed in 34 cases, and long-distance PCR for t(8;14) was performed in 18 cases. A total of 170 changes were present with a median of four changes per case (range 1-22). Gains of chromosomal material (143) were more frequent than amplifications (5) or losses (22). The most frequent aberrations were gains on chromosomes 12q (26%), Xq (22%), 22q (20%), 20q (17%) and 9q (15%). Losses predominantly involved chromosomes 13q (17%) and 4q (9%). High-level amplifications were present in the regions 1q23-31 (three cases), 6p12-p25 and 8p22-p23. Upon comparing BL vs Burkitt's cell leukemia (BCL), the latter had more changes (mean 4.3 +/- 2.2) than BL (mean 2.7 +/- 3.2). In addition, BCL cases showed more frequently gains on 8q, 9q, 14q, 20q, and 20q, 9q, 8q and 14q, as well as losses on 13q and 4q. Concerning outcome, the presence of abnormalities on 1q (ascertained either by cytogenetics or by CGH), and imbalances on 7q (P=0.01) were associated with a short survival

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    We produced a composite depth scale and chronology for Site U1385 on the SW Iberian Margin. Using log(Ca/Ti) measured by core scanning XRF at 1-cm resolution in all holes, a composite section was constructed to 166.5 meters composite depth (mcd) that corrects for stretching and squeezing in each core. Oxygen isotopes of benthic foraminifera were correlated to a stacked δ^18O reference signal (LR04) to produce an oxygen isotope stratigraphy and age model. Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37^oN. The benthic δ^18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ^18O surpassed ~ 3.3-3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles.This research was supported by the Natural Environmental Research Council Grant NE/K005804/1 to DH and LS and NE/J017922/1 to DH.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.gloplacha.2015.07.00

    Use of tocilizumab in kidney transplant recipients with COVID-1

    Get PDF
    Acute respiratory distress syndrome associated with coronavirus infection is related to a cytokine storm with large interleukin-6 (IL-6) release. The IL-6-receptor blocker tocilizumab may control the aberrant host immune response in patients with coronavirus disease 2019 (COVID-19) . In this pandemic, kidney transplant (KT) recipients are a high-risk population for severe infection and showed poor outcomes. We present a multicenter cohort study of 80 KT patients with severe COVID-19 treated with tocilizumab during hospital admission. High mortality rate was identified (32.5%), related with older age (hazard ratio [HR] 3.12 for those older than 60 years, P = .039). IL-6 and other inflammatory markers, including lactic acid dehydrogenase, ferritin, and D-dimer increased early after tocilizumab administration and their values were higher in nonsurvivors. Instead, C-reactive protein (CRP) levels decreased after tocilizumab, and this decrease positively correlated with survival (mean 12.3 mg/L in survivors vs. 33 mg/L in nonsurvivors). Each mg/L of CRP soon after tocilizumab increased the risk of death by 1% (HR 1.01 [confidence interval 1.004-1.024], P = .003). Although patients who died presented with worse respiratory situation at admission, this was not significantly different at tocilizumab administration and did not have an impact on outcome in the multivariate analysis. Tocilizumab may be effective in controlling cytokine storm in COVID-19 but randomized trials are needed

    Jak3 Is Involved in Dendritic Cell Maturation and CCR7-Dependent Migration

    Get PDF
    BACKGROUND: CCR7-mediated signalling is important for dendritic cell maturation and homing to the lymph nodes. We have previously demonstrated that Jak3 participates in the signalling pathway of CCR7 in T lymphocytes. METHODOLOGY AND PRINCIPAL FINDINGS: Here, we used Jak3(-/-) mice to analyze the role of Jak3 in CCR7-mediated dendritic cells migration and function. First, we found no differences in the generation of DCs from Jak3(-/-) bone marrow progenitors, when compared to wild type cells. However, phenotypic analysis of the bone marrow derived DCs obtained from Jak3(-/-) mice showed reduced expression of co-stimulatory molecules compared to wild type (Jak3(+/+)). In addition, when we analyzed the migration of Jak3(-/-) and Jak3(+/+) mature DCs in response to CCL19 and CCL21 chemokines, we found that the absence of Jak3 results in impaired chemotactic responses both in vitro and in vivo. Moreover, lymphocyte proliferation and contact hypersensitivity experiments showed that DC-mediated T lymphocyte activation is reduced in the absence of Jak3. CONCLUSION/SIGNIFICANCE: Altogether, our data provide strong evidence that Jak3 is important for DC maturation, migration and function, through a CCR7-mediated signalling pathway

    An insertional mutagenesis programme with an enhancer trap for the identification and tagging of genes involved in abiotic stress tolerance in the tomato wild-related species Solanum pennellii

    Get PDF
    Salinity and drought have a huge impact on agriculture since there are few areas free of these abiotic stresses and the problem continues to increase. In tomato, the most important horticultural crop worldwide, there are accessions of wild-related species with a high degree of tolerance to salinity and drought. Thus, the finding of insertional mutants with other tolerance levels could lead to the identification and tagging of key genes responsible for abiotic stress tolerance. To this end, we are performing an insertional mutagenesis programme with an enhancer trap in the tomato wild-related species Solanum pennellii. First, we developed an efficient transformation method which has allowed us to generate more than 2,000 T-DNA lines. Next, the collection of S. pennelli T0 lines has been screened in saline or drought conditions and several presumptive mutants have been selected for their salt and drought sensitivity. Moreover, T-DNA lines with expression of the reporter uidA gene in specific organs, such as vascular bundles, trichomes and stomata, which may play key roles in processes related to abiotic stress tolerance, have been identified. Finally, the growth of T-DNA lines in control conditions allowed us the identification of different development mutants. Taking into account that progenies from the lines are being obtained and that the collection of T-DNA lines is going to enlarge progressively due to the high transformation efficiency achieved, there are great possibilities for identifying key genes involved in different tolerance mechanisms to salinity and drought

    Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling

    Get PDF
    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.This work was funded by the Portuguese Foundation for Science and Technology (www.fct.pt) in the frame of the project Cork Oak EST Consortium SOBREIRO/0034/2009. Post-doc grant to MS was supported by the Portuguese Foundation for Science and Technology (SFRH/BPD/25661/2005). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    A reference time scale for Site U1385 (Shackleton Site) on the SW Iberian Margin

    Get PDF
    Variations in sediment color contain very strong precession signals at Site U1385, and the amplitude modulation of these cycles provides a powerful tool for developing an orbitally-tuned age model. We tuned the U1385 record by correlating peaks in L* to the local summer insolation maxima at 37°N. The benthic δ18O record of Site U1385, when placed on the tuned age model, generally agrees with other time scales within their respective chronologic uncertainties. The age model is transferred to down-core data to produce a continuous time series of log(Ca/Ti) that reflect relative changes of biogenic carbonate and detrital sediment. Biogenic carbonate increases during interglacial and interstadial climate states and decreases during glacial and stadial periods. Much of the variance in the log(Ca/Ti) is explained by a linear combination of orbital frequencies (precession, tilt and eccentricity), whereas the residual signal reflects suborbital climate variability. The strong correlation between suborbital log(Ca/Ti) variability and Greenland temperature over the last glacial cycle at Site U1385 suggests that this signal can be used as a proxy for millennial-scale climate variability over the past 1.5 Ma. Millennial climate variability, as expressed by log(Ca/Ti) at Site U1385, was a persistent feature of glacial climates over the past 1.5 Ma, including glacial periods of the early Pleistocene (‘41-kyr world’) when boundary conditions differed significantly from those of the late Pleistocene (‘100-kyr world’). Suborbital variability was suppressed during interglacial stages and enhanced during glacial periods, especially when benthic δ18O surpassed ~ 3.3–3.5‰. Each glacial inception was marked by appearance of strong millennial variability and each deglaciation was preceded by a terminal stadial event. Suborbital variability may be a symptomatic feature of glacial climate or, alternatively, may play a more active role in the inception and/or termination of glacial cycles

    Climate drives the geography of marine consumption by changing predator communities

    Get PDF
    Este artículo contiene 7 páginas, 3 figuras, 1 tabla.The global distribution of primary production and consumption by humans (fisheries) is well-documented, but we have no map linking the central ecological process of consumption within food webs to temperature and other ecological drivers. Using standardized assays that span 105° of latitude on four continents, we show that rates of bait consumption by generalist predators in shallow marine ecosystems are tightly linked to both temperature and the composition of consumer assemblages. Unexpectedly, rates of consumption peaked at midlatitudes (25 to 35°) in both Northern and Southern Hemispheres across both seagrass and unvegetated sediment habitats. This pattern contrasts with terrestrial systems, where biotic interactions reportedly weaken away from the equator, but it parallels an emerging pattern of a subtropical peak in marine biodiversity. The higher consumption at midlatitudes was closely related to the type of consumers present, which explained rates of consumption better than consumer density, biomass, species diversity, or habitat. Indeed, the apparent effect of temperature on consumption was mostly driven by temperature-associated turnover in consumer community composition. Our findings reinforce the key influence of climate warming on altered species composition and highlight its implications for the functioning of Earth’s ecosystems.We acknowledge funding from the Smithsonian Institution and the Tula Foundation.Peer reviewe
    corecore