27 research outputs found

    a retrospective multicenter study

    Get PDF
    Funding This study was supported in part by a grant from the French government through the « Programme Investissement d’Avenir» (I-SITE ULNE) managed by the Agence Nationale de la Recherche (coVAPid project). Prof. Ignacio Martin-Loeches has been supported by SFI (Science Foundation Ireland), Grant number 20/COV/0038. The funders of the study had no role in the study design, data collection, analysis or interpretation, writing of the report or deci sion to submit for publication.BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.publishersversionpublishe

    Relationship between ventilator-associated pneumonia and mortality in COVID-19 patients: a planned ancillary analysis of the coVAPid cohort

    Full text link
    Background Patients with SARS-CoV-2 infection are at higher risk for ventilator-associated pneumonia (VAP). No study has evaluated the relationship between VAP and mortality in this population, or compared this relationship between SARS-CoV-2 patients and other populations. The main objective of our study was to determine the relationship between VAP and mortality in SARS-CoV-2 patients. Methods Planned ancillary analysis of a multicenter retrospective European cohort. VAP was diagnosed using clinical, radiological and quantitative microbiological criteria. Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event. Findings Of 1576 included patients, 568 were SARS-CoV-2 pneumonia, 482 influenza pneumonia, and 526 no evidence of viral infection at ICU admission. VAP was associated with significantly higher risk for 28-day mortality in SARS-CoV-2 group (adjusted HR 1.65 (95% CI 1.11-2.46), p = 0.013), but not in influenza (1.74 (0.99-3.06), p = 0.052), or no viral infection groups (1.13 (0.68-1.86), p = 0.63). VAP was associated with significantly longer duration of mechanical ventilation in the SARS-CoV-2 group, but not in the influenza or no viral infection groups. VAP was associated with significantly longer duration of ICU stay in the 3 study groups. No significant difference was found in heterogeneity of outcomes related to VAP between the 3 groups, suggesting that the impact of VAP on mortality was not different between study groups. Interpretation VAP was associated with significantly increased 28-day mortality rate in SARS-CoV-2 patients. However, SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, did not significantly modify the relationship between VAP and 28-day mortality

    a planned ancillary analysis of the coVAPid cohort

    Get PDF
    Funding: This study was supported in part by a grant from the French government through the «Programme Investissement d’Avenir» (I-SITE ULNE) managed by the Agence Nationale de la Recherche (coVAPid project). The funders of the study had no role in the study design, data collection, analysis, or interpreta tion, writing of the report, or decision to submit for publication.BACKGROUND: Patients with SARS-CoV-2 infection are at higher risk for ventilator-associated pneumonia (VAP). No study has evaluated the relationship between VAP and mortality in this population, or compared this relationship between SARS-CoV-2 patients and other populations. The main objective of our study was to determine the relationship between VAP and mortality in SARS-CoV-2 patients. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort. VAP was diagnosed using clinical, radiological and quantitative microbiological criteria. Univariable and multivariable marginal Cox's regression models, with cause-specific hazard for duration of mechanical ventilation and ICU stay, were used to compare outcomes between study groups. Extubation, and ICU discharge alive were considered as events of interest, and mortality as competing event. FINDINGS: Of 1576 included patients, 568 were SARS-CoV-2 pneumonia, 482 influenza pneumonia, and 526 no evidence of viral infection at ICU admission. VAP was associated with significantly higher risk for 28-day mortality in SARS-CoV-2 (adjusted HR 1.70 (95% CI 1.16-2.47), p = 0.006), and influenza groups (1.75 (1.03-3.02), p = 0.045), but not in the no viral infection group (1.07 (0.64-1.78), p = 0.79). VAP was associated with significantly longer duration of mechanical ventilation in the SARS-CoV-2 group, but not in the influenza or no viral infection groups. VAP was associated with significantly longer duration of ICU stay in the 3 study groups. No significant difference was found in heterogeneity of outcomes related to VAP between the 3 groups, suggesting that the impact of VAP on mortality was not different between study groups. INTERPRETATION: VAP was associated with significantly increased 28-day mortality rate in SARS-CoV-2 patients. However, SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, did not significantly modify the relationship between VAP and 28-day mortality. CLINICAL TRIAL REGISTRATION: The study was registered at ClinicalTrials.gov, number NCT04359693.publishersversionpublishe

    Extracorporeal Membrane Oxygenation for Severe Acute Respiratory Distress Syndrome associated with COVID-19: An Emulated Target Trial Analysis.

    Get PDF
    RATIONALE: Whether COVID patients may benefit from extracorporeal membrane oxygenation (ECMO) compared with conventional invasive mechanical ventilation (IMV) remains unknown. OBJECTIVES: To estimate the effect of ECMO on 90-Day mortality vs IMV only Methods: Among 4,244 critically ill adult patients with COVID-19 included in a multicenter cohort study, we emulated a target trial comparing the treatment strategies of initiating ECMO vs. no ECMO within 7 days of IMV in patients with severe acute respiratory distress syndrome (PaO2/FiO2 <80 or PaCO2 ≥60 mmHg). We controlled for confounding using a multivariable Cox model based on predefined variables. MAIN RESULTS: 1,235 patients met the full eligibility criteria for the emulated trial, among whom 164 patients initiated ECMO. The ECMO strategy had a higher survival probability at Day-7 from the onset of eligibility criteria (87% vs 83%, risk difference: 4%, 95% CI 0;9%) which decreased during follow-up (survival at Day-90: 63% vs 65%, risk difference: -2%, 95% CI -10;5%). However, ECMO was associated with higher survival when performed in high-volume ECMO centers or in regions where a specific ECMO network organization was set up to handle high demand, and when initiated within the first 4 days of MV and in profoundly hypoxemic patients. CONCLUSIONS: In an emulated trial based on a nationwide COVID-19 cohort, we found differential survival over time of an ECMO compared with a no-ECMO strategy. However, ECMO was consistently associated with better outcomes when performed in high-volume centers and in regions with ECMO capacities specifically organized to handle high demand. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Voxelwise multivariate statistics and brain-wide machine learning using the full diffusion tensor.

    No full text
    International audienceIn this paper, we propose to use the full diffusion tensor to perform brain-wide score prediction on diffusion tensor imaging (DTI) using the log-Euclidean framework., rather than the commonly used fractional anisotropy (FA). Indeed, scalar values such as the FA do not capture all the information contained in the diffusion tensor. Additionally, full tensor information is included in every step of the pre-processing pipeline: registration, smoothing and feature selection using voxelwise multivariate regression analysis. This approach was tested on data obtained from 30 children and adolescents with autism spectrum disorder and showed some improvement over the FA-only analysis

    Relationship between SARS-CoV-2 infection and the incidence of ventilator-associated lower respiratory tract infections: a European multicenter cohort study

    No full text
    International audiencePurpose: Although patients with SARS-CoV-2 infection have several risk factors for ventilator-associated lower respiratory tract infections (VA-LRTI), the reported incidence of hospital-acquired infections is low. We aimed to determine the relationship between SARS-CoV-2 pneumonia, as compared to influenza pneumonia or no viral infection, and the incidence of VA-LRTI.Methods: Multicenter retrospective European cohort performed in 36 ICUs. All adult patients receiving invasive mechanical ventilation > 48 h were eligible if they had: SARS-CoV-2 pneumonia, influenza pneumonia, or no viral infection at ICU admission. VA-LRTI, including ventilator-associated tracheobronchitis (VAT) and ventilator-associated pneumonia (VAP), were diagnosed using clinical, radiological and quantitative microbiological criteria. All VA-LRTI were prospectively identified, and chest-X rays were analyzed by at least two physicians. Cumulative incidence of first episodes of VA-LRTI was estimated using the Kalbfleisch and Prentice method, and compared using Fine-and Gray models.Results: 1576 patients were included (568 in SARS-CoV-2, 482 in influenza, and 526 in no viral infection groups). VA-LRTI incidence was significantly higher in SARS-CoV-2 patients (287, 50.5%), as compared to influenza patients (146, 30.3%, adjusted sub hazard ratio (sHR) 1.60 (95% confidence interval (CI) 1.26 to 2.04)) or patients with no viral infection (133, 25.3%, adjusted sHR 1.7 (95% CI 1.2 to 2.39)). Gram-negative bacilli were responsible for a large proportion (82% to 89.7%) of VA-LRTI, mainly Pseudomonas aeruginosa, Enterobacter spp., and Klebsiella spp.Conclusions: The incidence of VA-LRTI is significantly higher in patients with SARS-CoV-2 infection, as compared to patients with influenza pneumonia, or no viral infection after statistical adjustment, but residual confounding may still play a role in the effect estimates

    Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia : a European multicenter comparative cohort study

    Get PDF
    Recent multicenter studies identified COVID-19 as a risk factor for invasive pulmonary aspergillosis (IPA). However, no large multicenter study has compared the incidence of IPA between COVID-19 and influenza patients. To determine the incidence of putative IPA in critically ill SARS-CoV-2 patients, compared with influenza patients. This study was a planned ancillary analysis of the coVAPid multicenter retrospective European cohort. Consecutive adult patients requiring invasive mechanical ventilation for > 48 h for SARS-CoV-2 pneumonia or influenza pneumonia were included. The 28-day cumulative incidence of putative IPA, based on Blot definition, was the primary outcome. IPA incidence was estimated using the Kalbfleisch and Prentice method, considering extubation (dead or alive) within 28 days as competing event. A total of 1047 patients were included (566 in the SARS-CoV-2 group and 481 in the influenza group). The incidence of putative IPA was lower in SARS-CoV-2 pneumonia group (14, 2.5%) than in influenza pneumonia group (29, 6%), adjusted cause-specific hazard ratio (cHR) 3.29 (95% CI 1.53-7.02, p = 0.0006). When putative IPA and Aspergillus respiratory tract colonization were combined, the incidence was also significantly lower in the SARS-CoV-2 group, as compared to influenza group (4.1% vs. 10.2%), adjusted cHR 3.21 (95% CI 1.88-5.46, p < 0.0001). In the whole study population, putative IPA was associated with significant increase in 28-day mortality rate, and length of ICU stay, compared with colonized patients, or those with no IPA or Aspergillus colonization. Overall, the incidence of putative IPA was low. Its incidence was significantly lower in patients with SARS-CoV-2 pneumonia than in those with influenza pneumonia. Clinical trial registration The study was registered at ClinicalTrials.gov, number . The online version contains supplementary material available at 10.1186/s13054-021-03874-1

    Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: a European multicenter comparative cohort study

    Get PDF
    Background: Recent multicenter studies identifed COVID-19 as a risk factor for invasive pulmonary aspergillosis (IPA). However, no large multicenter study has compared the incidence of IPA between COVID-19 and infuenza patients. Objectives: To determine the incidence of putative IPA in critically ill SARS-CoV-2 patients, compared with infuenza patients. Methods: This study was a planned ancillary analysis of the coVAPid multicenter retrospective European cohort. Con‑ secutive adult patients requiring invasive mechanical ventilation for>48 h for SARS-CoV-2 pneumonia or infuenza pneumonia were included. The 28-day cumulative incidence of putative IPA, based on Blot defnition, was the primary outcome. IPA incidence was estimated using the Kalbfeisch and Prentice method, considering extubation (dead or alive) within 28 days as competing event. Results: A total of 1047 patients were included (566 in the SARS-CoV-2 group and 481 in the infuenza group). The incidence of putative IPA was lower in SARS-CoV-2 pneumonia group (14, 2.5%) than in infuenza pneumonia group (29, 6%), adjusted cause-specifc hazard ratio (cHR) 3.29 (95% CI 1.53-7.02, p=0.0006). When putative IPA and Aspergillus respiratory tract colonization were combined, the incidence was also signifcantly lower in the SARS-CoV-2 group, as compared to infuenza group (4.1% vs. 10.2%), adjusted cHR 3.21 (95% CI 1.88-5.46, p<0.0001). In the whol

    Invasive pulmonary aspergillosis among intubated patients with SARS-CoV-2 or influenza pneumonia: a European multicenter comparative cohort study

    No full text
    Background: Recent multicenter studies identified COVID-19 as a risk factor for invasive pulmonary aspergillosis (IPA). However, no large multicenter study has compared the incidence of IPA between COVID-19 and influenza patients. Objectives: To determine the incidence of putative IPA in critically ill SARS-CoV-2 patients, compared with influenza patients. Methods: This study was a planned ancillary analysis of the coVAPid multicenter retrospective European cohort. Consecutive adult patients requiring invasive mechanical ventilation for &gt; 48 h for SARS-CoV-2 pneumonia or influenza pneumonia were included. The 28-day cumulative incidence of putative IPA, based on Blot definition, was the primary outcome. IPA incidence was estimated using the Kalbfleisch and Prentice method, considering extubation (dead or alive) within 28 days as competing event. Results: A total of 1047 patients were included (566 in the SARS-CoV-2 group and 481 in the influenza group). The incidence of putative IPA was lower in SARS-CoV-2 pneumonia group (14, 2.5%) than in influenza pneumonia group (29, 6%), adjusted cause-specific hazard ratio (cHR) 3.29 (95% CI 1.53-7.02, p= 0.0006). When putative IPA and Aspergillus respiratory tract colonization were combined, the incidence was also significantly lower in the SARS-CoV-2 group, as compared to influenza group (4.1% vs. 10.2%), adjusted cHR 3.21 (95% CI 1.88-5.46, p &lt; 0.0001). In the whole study population, putative IPA was associated with significant increase in 28-day mortality rate, and length of ICU stay, compared with colonized patients, or those with no IPA or Aspergillus colonization. Conclusions: Overall, the incidence of putative IPA was low. Its incidence was significantly lower in patients with SARS-CoV-2 pneumonia than in those with influenza pneumonia
    corecore