18 research outputs found
Reproductive adaptations to reduce locomotor costs in viviparous fish (Poeciliidae)
Viviparity, a live-bearing mode of reproduction, has evolved over 100 times independently in vertebrate animals. Despite its frequent evolution, viviparity has a number of hypothesised disadvantages compared to the ancestral mode of reproduction, oviparity (egg-laying). One of these disadvantages is a reduction in locomotor performance during pregnancy, the period of internal development of the embryos. Adaptations to a live-bearing reproductive mode could have evolved to reduce these locomotor costs. In this thesis, I aim to find whether matrotrophy, post-fertilization nutrient provisioning (e.g. through a placental structure), and superfetation, the presence of multiple broods of different developmental stages, reduce the locomotor performance decline during pregnancy in the Poeciliidae, live-bearing fishes. In Chapter 2, we review the literature on the effects of pregnancy on morphology, performance and fitness. The biomechanics of each mode of locomotion (walking, swimming or flying) are distinct, and are affected differently by the added mass and volume of pregnancy. Furthermore, we list the possible adaptations that have evolved to reduce the locomotor costs of pregnancy, and divide them into three different categories: adaptations that reduce the locomotor costs of live-bearing, adaptations with which the locomotor costs of live-bearing are avoided, and adaptations to the life history of the animal. Lastly, we discuss hiatuses in the literature and experimental procedures to quantify the hypothesised benefit of adaptations. In Chapter 3, we compare the morphological changes during pregnancy in two closely-related species of live-bearing fish: Poeciliopsis turneri and Poeciliopsis gracilis. These species mainly differ in their mode of nutrient provisioning: P. gracilis is lecithotrophic and P. turneri is an extensive matrotroph. We tracked the morphological changes in 3D using a non-invasive method that creates three-dimensional body models. We find that P. turneri is more slender during the early stages of pregnancy, but increase in size more rapidly. This is in line with the locomotor costs hypothesis, which predicts that matrotrophic fish are more slender during the early stages of pregnancy, but that the difference between the body shapes of lecithotrophic and matrotrophic fish diminishes as pregnancy progresses. Our results indicate that matrotrophy could indeed provide a morphological advantage during pregnancy. Fast-start performance, a manoeuvre fish deploy to escape predatory strikes, is important for individual survival. In Chapter 4, we use state-of-the-art biomechanical methods to, for the first time, quantify this manoeuvre in three-dimensional space in adult fish (Heterandria formosa). We show that fish can orient their escapes in up- and downwards direction, and that this is correlated with a change in pitch angle of the body. Changes in roll angle of the body were not correlated with orientation of the fish. We furthermore demonstrate that stage 1 of the fast start, often described as a preparatory stage, can already contribute to propulsion. The results from Chapter 4 indicate that three-dimensional measurements of fast-start manoeuvres provide novel insights that were often overlooked. Measuring fast starts in three-dimensional space is relevant in determining the adverse effects of pregnancy on locomotor performance. We did this by comparing three species of live-bearing fish: P. turneri, H. formosa and Phalloptychus januarius. In Chapter 5, we show that pregnancy-induced changes in abdominal width are correlated with a reduction in performance in the horizontal plane (maximal horizontal speed, change in yaw angle), but less so in the vertical plane (maximal vertical speed, change in pitch angle). Furthermore, we demonstrate that an increase in abdominal width is correlated with a decrease in abdominal curvature and, for some species, in a decrease in maximal curvature rate in the abdomen. Lastly, we show that the pregnancy-induced morphological changes depend on the level of superfetation: species with a high level of superfetation experience higher frequency, but smaller amplitude changes in the shape of the abdomen. Whether superfetation actually results in a more slender body shape, as predicted by the locomotor costs hypothesis, depends on the level of reproductive investment. In this thesis, I show that pregnancy induces changes in morphology which comes with a cost in fast-start performance. Both matrotrophy and superfetation affect how body shape changes due to pregnancy, but whether the latter provides beneficial changes depends on the level of reproductive investment. Furthermore, I reveal that fast starts can have a substantial three-dimensional component which is relevant both to biomechanicists that aim to understand the physical and physiological mechanisms underlying this manoeuvre and to evolutionary biologists that strive to answer performance-related questions.</p
Coasting in live-bearing fish: The drag penalty of being pregnant
Swimming performance of pregnant live-bearing fish is presumably constrained by the additional drag associated with the reproductive burden. Yet, it is still unclear how and to what extent the reproductive investment affects body drag of the females. We examined the effect of different levels of reproductive investment on body drag. The biggest measured increase in body volume due to pregnancy was about 43%, linked to a wetted area increase of about 16% and 69% for the frontal area. We printed three-dimensional models of live-bearing fish in a straight body posture representing different reproductive allocation (RA) levels. We measured the drag and visualized the flow around these models in a flow tunnel at different speeds. Drag grew in a power fashion with speed and exponentially with the increase of RA, thus drag penalty for becoming thicker was relatively low for low speeds compared to high ones. We show that the drag increase with increasing RA was most probably due to bigger regions of flow separation behind the enlarged belly. We suggest that the rising drag penalty with an increasing RA, possibly together with pregnancy-related negative effects on muscle- and abdominal bending performance, will reduce the maximum swimming speed
Evaluating implementation of a fire-prevention injury prevention briefing in children's centres: cluster randomised controlled trial
Background: Many developed countries have high mortality rates for fire-related deaths in children aged 0–14 years with steep social gradients. Evidence-based interventions to promote fire safety practices exist, but the impact of implementing a range of these interventions in children’s services has not been assessed. We developed an Injury Prevention Briefing (IPB), which brought together evidence about effective fire safety interventions and good practice in delivering interventions; plus training and facilitation to support its use and evaluated its implementation.
Methods: We conducted a cluster randomised controlled trial, with integrated qualitative and cost-effectiveness nested studies, across four study sites in England involving children’s centres in disadvantaged areas; participants were staff and families attending those centres. Centres were stratified by study site and randomised within strata to one of three arms: IPB plus facilitation (IPB+), IPB only, usual care. IPB+ centres received initial training and facilitation at months 1, 3, and 8. Baseline data from children’s centres were collected between August 2011 and January 2012 and follow-up data were collected between June 2012 and June 2013. Parent baseline data were collected between January 2012 and May 2012 and follow-up data between May 2013 and September 2013. Data comprised baseline and 12 month parent- and staff-completed questionnaires, facilitation contact data, activity logs and staff interviews. The primary outcome was whether families had a plan for escaping from a house fire. Treatment arms were compared using multilevel models to account for clustering by children’s centre.
Results: 1112 parents at 36 children’s centres participated. There was no significant effect of the intervention on families’ possession of plans for escaping from a house fire (adjusted odds ratio (AOR) IPB only vs. usual care: 0.93, 95%CI 0.58, 1.49; AOR IPB+ vs. usual care 1.41, 95%CI 0.91, 2.20). However, significantly more families in the intervention arms reported more behaviours for escaping from house fires (AOR IPB only vs. usual care: 2.56, 95%CI 01.38, 4.76; AOR IPB+ vs. usual care 1.78, 95%CI 1.01, 3.15).
Conclusion: Our study demonstrated that children’s centres can deliver an injury prevention intervention to families in disadvantaged communities and achieve changes in home safety behaviours
Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish
Superfetation, the ability to simultaneously carry multiple litters of different developmental stages in utero, is a reproductive strategy that evolved repeatedly in viviparous animal lineages. The evolution of superfetation is hypothesized to reduce the reproductive burden and, consequently, improve the locomotor performance of the female during pregnancy. Here, we apply new computer-vision-based techniques to study changes in body shape and three-dimensional fast-start escape performance during pregnancy in three live-bearing fishes (family Poeciliidae) that exhibit different levels of superfetation. We found that superfetation correlates with a reduced abdominal distension and a more slender female body shape just before parturition. We further found that body slenderness positively correlates with maximal speeds, curvature amplitude and curvature rate, implying that superfetation improves the fast-start escape performance. Collectively, our study suggests that superfetation may have evolved in performance-demanding (e.g. high flow or high predation) environments to reduce the locomotor cost of pregnancy.</p
Data from: Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish
Superfetation, the ability to simultaneously carry multiple litters of different developmental stages in utero, is a reproductive strategy that evolved repeatedly in viviparous animal lineages. The evolution of superfetation is hypothesized to reduce the reproductive burden and, consequently, improve the locomotor performance of the female during pregnancy. Here, we apply new computer-vision based techniques to study changes in body shape and three-dimensional fast-start escape performance during pregnancy in three livebearing fishes (family Poeciliidae) that exhibit different levels of superfetation. We found that superfetation correlates with a reduced abdominal distension and a more slender female body shape just before parturition. We further found that body slenderness positively correlates with maximal speeds, curvature amplitude and curvature rate, implying that superfetation improves the fast-start escape performance. Collectively, our study suggests that superfetation may have evolved in performance-demanding (e.g. high flow or high predation) environments to reduce the locomotor cost of pregnancy
Superfetation reduces the negative effects of pregnancy on the fast-start escape performance in live-bearing fish
Superfetation, the ability to simultaneously carry multiple litters of different developmental stages in utero, is a reproductive strategy that evolved repeatedly in viviparous animal lineages. The evolution of superfetation is hypothesized to reduce the reproductive burden and, consequently, improve the locomotor performance of the female during pregnancy. Here, we apply new computer-vision-based techniques to study changes in body shape and three-dimensional fast-start escape performance during pregnancy in three live-bearing fishes (family Poeciliidae) that exhibit different levels of superfetation. We found that superfetation correlates with a reduced abdominal distension and a more slender female body shape just before parturition. We further found that body slenderness positively correlates with maximal speeds, curvature amplitude and curvature rate, implying that superfetation improves the fast-start escape performance. Collectively, our study suggests that superfetation may have evolved in performance-demanding (e.g. high flow or high predation) environments to reduce the locomotor cost of pregnancy.</p
Why do placentas evolve? Evidence for a morphological advantage during pregnancy in live-bearing fish
A live-bearing reproductive strategy can induce large morphological changes in the mother during pregnancy. The evolution of the placenta in swimming animals involves a shift in the timing of maternal provisioning from pre-fertilization (females supply their eggs with sufficient yolk reserves prior to fertilization) to post-fertilization (females provide all nutrients via a placenta during the pregnancy). It has been hypothesised that this shift, associated with the evolution of the placenta, should confer a morphological advantage to the females leading to a more slender body shape during the early stages of pregnancy. We tested this hypothesis by quantifying three-dimensional shape and volume changes during pregnancy and in full-grown virgin controls of two species within the live-bearing fish family Poeciliidae: Poeciliopsis gracilis (non-placental) and Poeciliopsis turneri (placental). We show that P. turneri is more slender than P. gracilis at the beginning of the interbrood interval and in virgins, and that these differences diminish towards the end of pregnancy. This study provides the first evidence for an adaptive morphological advantage of the placenta in live-bearing fish. A similar morphological benefit could drive the evolution of placentas in other live-bearing (swimming) animal lineages
Organisational structure as barrier or support in the personal social services? : Results from a client survey
“Specialization or integration in the Personal social services? Effects on interventions and results”, and is funded by the Swedish council for working life and social research (FAS)
Three-dimensional analysis of the fast-start escape response of the least killifish, Heterandria formosa
Fish make C-starts to evade predator strikes. Double-bend (DB) C-starts consist of three stages: Stage 1, in which the fish rapidly bends into a C-shape; Stage 2, in which the fish bends in the opposite direction; and a variable Stage 3. In single-bend (SB) C-starts, the fish immediately straightens after Stage 1. Despite fish moving in threedimensional (3D) space, fast-start responses of adult fish have mainly been studied in a horizontal plane. Using automated 3D tracking of multi-camera high-speed video sequences, we show that both SB and DB fast-starts by adult female least killifish (Heterandria formosa) often contain a significant vertical velocity component, and large changes in pitch (DB up to 43 deg) and roll (DB up to 77 deg) angles. Upwards and downwards elevation changes are correlated with changes in pitch angle of the head; movement in the horizontal plane is correlated with changes in yaw angle of the head. With respect to the stimulus, escape heading correlates with the elevation of the fish at the onset of motion. Irrespective of the initial orientation, fish can escape in any horizontal direction. In many cases, the centre of mass barely accelerates during Stage 1. However, it does accelerate in the final direction of the escape in other instances, indicating that Stage 1 can serve a propulsive role in addition to its preparatory role for Stage 2. Our findings highlight the importance of large-scale 3D analyses of fast-start manoeuvres of adult fish in uncovering the versatility of fish escape repertoire
Three-dimensional analysis of the fast-start escape response of the least killifish, Heterandria formosa
Fish make C-starts to evade predator strikes. Double-bend (DB) C-starts consist of three stages: Stage 1, in which the fish rapidly bends into a C-shape; Stage 2, in which the fish bends in the opposite direction; and a variable Stage 3. In single-bend (SB) C-starts, the fish immediately straightens after Stage 1. Despite fish moving in threedimensional (3D) space, fast-start responses of adult fish have mainly been studied in a horizontal plane. Using automated 3D tracking of multi-camera high-speed video sequences, we show that both SB and DB fast-starts by adult female least killifish (Heterandria formosa) often contain a significant vertical velocity component, and large changes in pitch (DB up to 43 deg) and roll (DB up to 77 deg) angles. Upwards and downwards elevation changes are correlated with changes in pitch angle of the head; movement in the horizontal plane is correlated with changes in yaw angle of the head. With respect to the stimulus, escape heading correlates with the elevation of the fish at the onset of motion. Irrespective of the initial orientation, fish can escape in any horizontal direction. In many cases, the centre of mass barely accelerates during Stage 1. However, it does accelerate in the final direction of the escape in other instances, indicating that Stage 1 can serve a propulsive role in addition to its preparatory role for Stage 2. Our findings highlight the importance of large-scale 3D analyses of fast-start manoeuvres of adult fish in uncovering the versatility of fish escape repertoire