136 research outputs found

    Effects of pressurization and surface tension on drawing Ge-Sb-Se chalcogenide glass suspended-core fiber

    Get PDF
    Drawing chalcogenide glass microstructured optical fibers efficiently requires a good understanding of the different drawing conditions beforehand, due to the high cost of the chalcogenide glass materials. A simulation based on Stokes’ model that includes pressurization and glass surface tension is validated with respect to drawing a Ge28Sb12Se60 chalcogenide glass single hole capillary, as well as microstructured optical fiber with three holes, with different pressurizations. Suspended-core Ge28Sb12Se60 fibers with bridges just hundreds of nanometer wide are drawn using parameters predicted by the simulations. These fibers should be suitable for applications such as generating mid-infrared (MIR) supercontinuum based on chalcogenide glasses.Wu Shengling, Simon Fleming, Boris T. Kuhlmey, Heike Ebendorff-Heidepriem and Alessio Stefan

    Transient thermal effects in solid noble gases as materials for the detection of Dark Matter

    Full text link
    The transient phenomena produced in solid noble gases by the stopping of the recoils resulting from the elastic scattering processes of WIMPs from the galactic halo were modelled, as dependencies of the temperatures of lattice and electronic subsystems on the distance to the recoil's trajectory, and time from its passage. The peculiarities of these thermal transients produced in Ar, Kr and Xe were analysed for different initial temperatures and WIMP energies, and were correlated with the characteristics of the targets and with the energy loss of the recoils. The results were compared with the thermal spikes produced by the same WIMPs in Si and Ge. In the range of the energy of interest, up to tens of keV for the self-recoil, local phase transitions solid - liquid and even liquid - gas were found possible, and the threshold parameters were established.Comment: Minor corrections and updated references; accepted to JCA

    A Regenerable Filter for Liquid Argon Purification

    Full text link
    A filter system for removing electronegative impurities from liquid argon is described. The active components of the filter are adsorbing molecular sieve and activated-copper-coated alumina granules. The system is capable of purifying liquid argon to an oxygen-equivalent impurity concentration of better than 30 parts per trillion, corresponding to an electron drift lifetime of at least 10 ms. Reduction reactions that occur at about 250 degrees Celsius allow the filter material to be regenerated in-situ through a simple procedure. In the following work we describe the filter design, performance, and regeneration process.Comment: 12 pages with 9 figure

    Magnetic fields in protoplanetary disks

    Full text link
    Magnetic fields likely play a key role in the dynamics and evolution of protoplanetary discs. They have the potential to efficiently transport angular momentum by MHD turbulence or via the magnetocentrifugal acceleration of outflows from the disk surface, and magnetically-driven mixing has implications for disk chemistry and evolution of the grain population. However, the weak ionisation of protoplanetary discs means that magnetic fields may not be able to effectively couple to the matter. I present calculations of the ionisation equilibrium and magnetic diffusivity as a function of height from the disk midplane at radii of 1 and 5 AU. Dust grains tend to suppress magnetic coupling by soaking up electrons and ions from the gas phase and reducing the conductivity of the gas by many orders of magnitude. However, once grains have grown to a few microns in size their effect starts to wane and magnetic fields can begin to couple to the gas even at the disk midplane. Because ions are generally decoupled from the magnetic field by neutral collisions while electrons are not, the Hall effect tends to dominate the diffusion of the magnetic field when it is able to partially couple to the gas. For a standard population of 0.1 micron grains the active surface layers have a combined column of about 2 g/cm^2 at 1 AU; by the time grains have aggregated to 3 microns the active surface density is 80 g/cm^2. In the absence of grains, x-rays maintain magnetic coupling to 10% of the disk material at 1 AU (150 g/cm^2). At 5 AU the entire disk thickness becomes active once grains have aggregated to 1 micron in size.Comment: 11 pages, 11 figs, aastex.cls. Accepted for publication in Astrophysics & Space Science. v3 corrects bibliograph

    First Observation of Coherent π0\pi^0 Production in Neutrino Nucleus Interactions with Eν<E_{\nu}< 2 GeV

    Get PDF
    The MiniBooNE experiment at Fermilab has amassed the largest sample to date of π0\pi^0s produced in neutral current (NC) neutrino-nucleus interactions at low energy. This paper reports a measurement of the momentum distribution of π0\pi^0s produced in mineral oil (CH2_2) and the first observation of coherent π0\pi^0 production below 2 GeV. In the forward direction, the yield of events observed above the expectation for resonant production is attributed primarily to coherent production off carbon, but may also include a small contribution from diffractive production on hydrogen. Integrated over the MiniBooNE neutrino flux, the sum of the NC coherent and diffractive modes is found to be (19.5 ±\pm1.1 (stat) ±\pm2.5 (sys))% of all exclusive NC π0\pi^0 production at MiniBooNE. These measurements are of immediate utility because they quantify an important background to MiniBooNE's search for νμνe\nu_{\mu} \to \nu_e oscillations.Comment: Submitted to Phys. Lett.

    A Proposal for a Detector 2 km Away From the T2K Neutrino Source

    No full text
    We propose building a detector site 2km from the neutrino production point of the the T2K experiment. At this distance, almost the same neutrino flux is measured as that seen at Super-K 295 km away. We propose to measure this flux with both a 1 kton water Cherenkov detector which has been optimized to match Super-K resolution, and a 100 ton fiducial volume liquid argon time projection chamber which will provide fine grain imaging and low particle detection thresholds for a precise study of neutrino interactions at the relevant energies. High energy muons which exit the water Cherenkov detector will be measured by an iron muon ranger. In this document, we show that combination of a detector made with the same target as Super-K, with almost the same detector response, and an extremely fine-grained tracking chamber sited in the off-axis beam, will allow us to predict the events seen at Super-K with very little correction other than that of geometric acceptance

    Test of Lorentz and CPT violation with Short Baseline Neutrino Oscillation Excesses

    Get PDF
    The sidereal time dependence of MiniBooNE electron neutrino and anti-electron neutrino appearance data are analyzed to search for evidence of Lorentz and CPT violation. An unbinned Kolmogorov-Smirnov test shows both the electron neutrino and anti-electron neutrino appearance data are compatible with the null sidereal variation hypothesis to more than 5%. Using an unbinned likelihood fit with a Lorentz-violating oscillation model derived from the Standard Model Extension (SME) to describe any excess events over background, we find that the electron neutrino appearance data prefer a sidereal time-independent solution, and the anti-electron neutrino appearance data slightly prefer a sidereal time-dependent solution. Limits of order 10E-20 GeV are placed on combinations of SME coefficients. These limits give the best limits on certain SME coefficients for muon neutrino to electron neutrino and anti-muon neutrino to anti-electron neutrino oscillations. The fit values and limits of combinations of SME coefficients are provided.Comment: 14 pages, 3 figures, and 2 tables, submitted to Physics Letters

    Design and construction of the MicroBooNE detector

    Get PDF
    This paper describes the design and construction of the MicroBooNE liquid argon time projection chamber and associated systems. MicroBooNE is the first phase of the Short Baseline Neutrino program, located at Fermilab, and will utilize the capabilities of liquid argon detectors to examine a rich assortment of physics topics. In this document details of design specifications, assembly procedures, and acceptance tests are reported

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
    corecore