220 research outputs found

    Characterization of the low-lying 0(+) and 2(+) states in Ni-68 via beta decay of the low-spin Co-68 isomer

    Get PDF
    The low-energy structure of the neutron-rich nucleus Ni-68 has been investigated by measuring the beta decay of the low-spin isomer in Co-68 selectively produced in the decay chain of Mn-68. A revised level scheme has been built based on the clear identification of beta-gamma-E0 delayed coincidences. Transitions between the three lowest-lying 0(+) and 2(+) states are discussed on the basis of measured intensities or their upper limits for unobserved branches and state-of-the-art shell model calculations

    First spectroscopy of 66^{66}Se and 65^{65}As: Investigating shape coexistence beyond the N = Z line

    Get PDF
    The experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL), at Michigan State University (USA).We report on the first γ spectroscopy of 66Se and 65As from two-neutron removal at intermediate beam energies. The deduced excitation energies for the first-excited states in 66Se and 65As are compared to mean-field-based predictions within a collective Hamiltonian formalism using the Gogny D1S effective interaction and to state-of-the-art shell-model calculations restricted to the pf5/2 g9/2 valence space. The obtained Coulomb-energy differences for the first excited states in 66Se and 65As are discussed within the shell-model formalism to assess the shape-coexistence picture for both nuclei. Our results support a favored oblate ground-state deformation in 66Se and 65As. A shape transition for the ground state of even-odd As isotopes from oblate in 65As to prolate in 67,69,71As is suggested

    Study of key resonances in the 30P(p,γ)31S reaction in classical novae

    Get PDF
    Among reactions with strong impact on classical novae model predictions, 30P(p,γ)31S is one of the few remained that are worthy to be measured accurately, because of their rate uncertainty, as like as 18F(p,α)15O and 25Al(pγ)26Si. To reduce the nuclear uncertainties associated to this reaction, we performed an experiment at ALTO facility of Orsay using the 31P(3He,t)31S reaction to populate 31S excited states of astrophysical interest and detect in coincidence the protons coming from the decay of the populated states in order to extract the proton branching ratios. After a presentation of the astrophysical context of this work, the current situation of the 30P(p,γ)31S reaction rate will be discussed. Then the experiment set-up of this work and the analysis of the single events will be presented

    STRASSE: A Silicon Tracker for Quasi-free Scattering Measurements at the RIBF

    Full text link
    STRASSE (Silicon Tracker for RAdioactive nuclei Studies at SAMURAI Experiments) is a new detection system under construction for quasi-free scattering (QFS) measurements at 200-250 MeV/nucleon at the RIBF facility of the RIKEN Nishina Center. It consists of a charged-particle silicon tracker coupled with a dedicated thick liquid hydrogen target (up to 150-mm long) in a compact geometry to fit inside large scintillator or germanium arrays. Its design was optimized for two types of studies using QFS: missing-mass measurements and in-flight prompt γ\gamma-ray spectroscopy. This article describes (i) the resolution requirements needed to go beyond the sensitivity of existing systems for these two types of measurements, (ii) the conceptual design of the system using detailed simulations of the setup and (iii) its complete technical implementation and challenges. The final tracker aims at a sub-mm reaction vertex resolution and is expected to reach a missing-mass resolution below 2 MeV in σ\sigma for (p,2p)(p,2p) reactions when combined with the CsI(Na) CATANA array.Comment: 25 pages, 29 figure

    Single-neutron orbits near Ni-78: Spectroscopy of the N=49 isotope Zn-79

    Get PDF
    5 pags., 6 figs.Single-neutron states in the , isotope 79Zn have been populated using the 78Zn(d, p)79Zn transfer reaction at REX-ISOLDE, CERN. The experimental setup allowed the combined detection of protons ejected in the reaction, and of γ rays emitted by 79Zn. The analysis reveals that the lowest excited states populated in the reaction lie at approximately 1 MeV of excitation, and involve neutron orbits above the shell gap. From the analysis of γ-ray data and of proton angular distributions, characteristic of the amount of angular momentum transferred, a configuration was assigned to a state at 983 keV. Comparison with large-scale-shell-model calculations supports a robust neutron shell-closure for 78Ni. These data constitute an important step towards the understanding of the magicity of 78Ni and of the structure of nuclei in the region.This work was supported by the European Commission through the Marie Curie Actions Contracts Nos. PIEFGA-2011-30096 (R.O.) and PIEFGA-2008-219175 (J.P.), by the Spanish Ministerio de Ciencia e Innovación under contracts FPA2009-13377-C02 and FPA2011-29854-C04, by the Spanish MEC Consolider – Ingenio 2010, Project No. CDS2007-00042 (CPAN), by FWO-Vlaanderen (Belgium), by GOA/2010/010 (BOF KU Leuven), by the Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office (BriX network P7/12), by the European Union Seventh Framework Programme through ENSAR, contract no. RII3-CT-2010-262010, and by the German BMBF under contracts 05P09PKCI5, 05P12PKFNE, 05P12RDCIA and 06DA9036I. R.O., R.C., J.F.W.L., V.L. and J.F.S. also acknowledge support from STFC, Grant Nos. PP/F000944/1, ST/F007590/1, and ST/J000183/2

    Fast-timing study of the l -forbidden 12+→32+ M1 transition in Sn 129 FAST-TIMING STUDY of the l -FORBIDDEN ⋯ R. LICǎ et al.

    Get PDF
    © 2016 authors. Published by the American Physical Society.The levels in Sn129 populated from the β- decay of In129 isomers were investigated at the ISOLDE facility of CERN using the newly commissioned ISOLDE Decay Station (IDS). The lowest 12+ state and the 32+ ground state in Sn129 are expected to have configurations dominated by the neutron s12 (l=0) and d32 (l=2) single-particle states, respectively. Consequently, these states should be connected by a somewhat slow l-forbidden M1 transition. Using fast-timing spectroscopy we have measured the half-life of the 12+ 315.3-keV state, T12= 19(10) ps, which corresponds to a moderately fast M1 transition. Shell-model calculations using the CD-Bonn effective interaction, with standard effective charges and g factors, predict a 4-ns half-life for this level. We can reconcile the shell-model calculations to the measured T12 value by the renormalization of the M1 effective operator for neutron holes
    corecore