266 research outputs found

    Correlations between various hardness ratios of gamma-ray bursts

    Full text link
    We study correlations between various hardness ratios of gamma-ray bursts (GRBs) and investigate if there are any differences between the two classes of the objects in the distributions of the ratios. The results suggest that, statistically, the slope of the higher part of the spectrum of the long duration bursts has nothing to do with that of the lower part; emissions at higher energy bands from the bursts of both short and long duration classes must be significantly different for different sources, while radiations at lower energy bands of the objects are relatively similar; the spectrum of the short duration bursts must be harder than that of the long duration bursts, confirming what the well-known hardness-duration correlation reveals; the profiles of the spectra between the long duration bursts must be more similar than that between the short duration bursts. The long duration bursts would share more common properties than the short duration bursts. A possible interpretation is proposed with the concept of the Doppler boosting in the relativistic beaming model in AGNs.Comment: 38 pages, 30 figure

    An analysis of the durations of Swift Gamma-Ray Bursts

    Full text link
    We report the systematic analysis of the durations for Swift gamma-ray bursts (GRBs) and compare the results with those of pre-Swift data. For 95 GRBs with known redshift, we show that the observed durations have two lognormal distributions that are clearly divided at T902T_{90}\simeq2 s. This is consistent with the earlier BATSE results. The intrinsic durations also show a bimodal distribution but shift systematically toward the smaller value and the distribution exhibits a narrower width compared with the observed one. We find that the intrinsic distributions of long GRBs between Swift and pre-Swift are significantly different particularly in the width and the median value. In addition, the Swift data exhibit a wider dynamic range of duration. Our present study not only confirms the spectra of short GRBs are in general harder than the long GRBs in the observer frame but also shows this trend becomes weaker in the source frame.Comment: 5 pages, 4 figures and 2 table; Accepted to A&A with minor changes; Note that our previously main conclusions are unchange

    Optical Diode Effect at Spin-Wave Excitations of the Room-Temperature Multiferroic BiFeO3

    Get PDF
    Multiferroics permit the magnetic control of the electric polarization and the electric control of the magnetization. These static magnetoelectric (ME) effects are of enormous interest: The ability to read and write a magnetic state current-free by an electric voltage would provide a huge technological advantage. Dynamic or optical ME effects are equally interesting, because they give rise to unidirectional light propagation as recently observed in low-temperature multiferroics. This phenomenon, if realized at room temperature, would allow the development of optical diodes which transmit unpolarized light in one, but not in the opposite, direction. Here, we report strong unidirectional transmission in the room-temperature multiferroic BiFeO3 over the gigahertz-terahertz frequency range. The supporting theory attributes the observed unidirectional transmission to the spin-current-driven dynamic ME effect. These findings are an important step toward the realization of optical diodes, supplemented by the ability to switch the transmission direction with a magnetic or electric field.clos

    Global characteristics of GRBs observed with INTEGRAL and the inferred large population of low-luminosity GRBs

    Full text link
    INTEGRAL has two sensitive gamma-ray instruments that have detected 46 gamma-ray bursts (GRBs) up to July 2007. We present the spectral, spatial, and temporal properties of the bursts in the INTEGRAL GRB catalogue using data from the imager, IBIS, and spectrometer, SPI. Spectral properties of the GRBs are determined using power-law, Band model and quasithermal model fits to the prompt emission. Spectral lags, i.e. the time delay in the arrival of low-energy gamma-rays with respect to high-energy gamma-rays, are measured for 31 of the GRBs. The photon index distribution of power-law fits to the prompt emission spectra is consistent with that obtained by Swift. The peak flux distribution shows that INTEGRAL detects proportionally more weak GRBs than Swift because of its higher sensitivity in a smaller field of view. The all-sky rate of GRBs above ~0.15 ph cm^-2 s^-1 is ~1400 yr^-1 in the fully coded field of view of IBIS. Two groups are identified in the spectral lag distribution, one with short lags <0.75 s (between 25-50 keV and 50-300 keV) and one with long lags >0.75 s. Most of the long-lag GRBs are inferred to have low redshifts because of their long spectral lags, their tendency to have low peak energies and their faint optical and X-ray afterglows. They are mainly observed in the direction of the supergalactic plane with a quadrupole moment of Q=-0.225+/-0.090 and hence reflect the local large-scale structure of the Universe. The rate of long-lag GRBs with inferred low luminosity is ~25% of Type Ib/c supernovae. Some of these bursts could be produced by the collapse of a massive star without a supernova or by a different progenitor, such as the merger of two white dwarfs or a white dwarf with a neutron star or black hole, possibly in the cluster environment without a host galaxy.Comment: 22 pages, 13 figures and appendix, accepted for publication in A&A, added and updated reference

    Finding Your Mate at a Cocktail Party: Frequency Separation Promotes Auditory Stream Segregation of Concurrent Voices in Multi-Species Frog Choruses

    Get PDF
    Vocal communication in crowded social environments is a difficult problem for both humans and nonhuman animals. Yet many important social behaviors require listeners to detect, recognize, and discriminate among signals in a complex acoustic milieu comprising the overlapping signals of multiple individuals, often of multiple species. Humans exploit a relatively small number of acoustic cues to segregate overlapping voices (as well as other mixtures of concurrent sounds, like polyphonic music). By comparison, we know little about how nonhuman animals are adapted to solve similar communication problems. One important cue enabling source segregation in human speech communication is that of frequency separation between concurrent voices: differences in frequency promote perceptual segregation of overlapping voices into separate “auditory streams” that can be followed through time. In this study, we show that frequency separation (ΔF) also enables frogs to segregate concurrent vocalizations, such as those routinely encountered in mixed-species breeding choruses. We presented female gray treefrogs (Hyla chrysoscelis) with a pulsed target signal (simulating an attractive conspecific call) in the presence of a continuous stream of distractor pulses (simulating an overlapping, unattractive heterospecific call). When the ΔF between target and distractor was small (e.g., ≤3 semitones), females exhibited low levels of responsiveness, indicating a failure to recognize the target as an attractive signal when the distractor had a similar frequency. Subjects became increasingly more responsive to the target, as indicated by shorter latencies for phonotaxis, as the ΔF between target and distractor increased (e.g., ΔF = 6–12 semitones). These results support the conclusion that gray treefrogs, like humans, can exploit frequency separation as a perceptual cue to segregate concurrent voices in noisy social environments. The ability of these frogs to segregate concurrent voices based on frequency separation may involve ancient hearing mechanisms for source segregation shared with humans and other vertebrates

    Forward Masking Estimated by Signal Detection Theory Analysis of Neuronal Responses in Primary Auditory Cortex

    Get PDF
    Psychophysical forward masking is an increase in threshold of detection of a sound (probe) when it is preceded by another sound (masker). This is reminiscent of the reduction in neuronal responses to a sound following prior stimulation. Studies in the auditory nerve and cochlear nucleus using signal detection theory techniques to derive neuronal thresholds showed that in centrally projecting neurons, increases in masked thresholds were significantly smaller than the changes measured psychophysically. Larger threshold shifts have been reported in the inferior colliculus of awake marmoset. The present study investigated the magnitude of forward masking in primary auditory cortical neurons of anaesthetised guinea-pigs. Responses of cortical neurons to unmasked and forward masked tones were measured and probe detection thresholds estimated using signal detection theory methods. Threshold shifts were larger than in the auditory nerve, cochlear nucleus and inferior colliculus. The larger threshold shifts suggest that central, and probably cortical, processes contribute to forward masking. However, although methodological differences make comparisons difficult, the threshold shifts in cortical neurons were, in contrast to subcortical nuclei, actually larger than those observed psychophysically. Masking was largely attributable to a reduction in the responses to the probe, rather than either a persistence of the masker responses or an increase in the variability of probe responses
    corecore