55 research outputs found

    Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star/black-hole binaries

    Get PDF
    For an inspiraling neutron-star/black-hole binary (NS/BH), we estimate the gravity-wave frequency f_td at the onset of NS tidal disruption. We model the NS as a tidally distorted, homogeneous, Newtonian ellipsoid on a circular, equatorial geodesic around a Kerr BH. We find that f_td depends strongly on the NS radius R, and estimate that LIGO-II (ca. 2006-2008) might measure R to 15% precision at 140 Mpc (about 1 event/yr under current estimates). This suggests that LIGO-II might extract valuable information about the NS equation of state from tidal-disruption waves.Comment: RevTeX, 4 pages, 2 EPS figures. Revised slightly, corrected typo

    An approximate binary-black-hole metric

    Get PDF
    An approximate solution to Einstein's equations representing two widely-separated non-rotating black holes in a circular orbit is constructed by matching a post-Newtonian metric to two perturbed Schwarzschild metrics. The spacetime metric is presented in a single coordinate system valid up to the apparent horizons of the black holes. This metric could be useful in numerical simulations of binary black holes. Initial data extracted from this metric have the advantages of being linked to the early inspiral phase of the binary system, and of not containing spurious gravitational waves.Comment: 20 pages, 1 figure; some changes in Sec. IV B,C and Sec.

    Retarded coordinates based at a world line, and the motion of a small black hole in an external universe

    Full text link
    In the first part of this article I present a system of retarded coordinates based at an arbitrary world line of an arbitrary curved spacetime. The retarded-time coordinate labels forward light cones that are centered on the world line, the radial coordinate is an affine parameter on the null generators of these light cones, and the angular coordinates are constant on each of these generators. The spacetime metric in the retarded coordinates is displayed as an expansion in powers of the radial coordinate and expressed in terms of the world line's acceleration vector and the spacetime's Riemann tensor evaluated at the world line. The formalism is illustrated in two examples, the first involving a comoving world line of a spatially-flat cosmology, the other featuring an observer in circular motion in the Schwarzschild spacetime. The main application of the formalism is presented in the second part of the article, in which I consider the motion of a small black hole in an empty external universe. I use the retarded coordinates to construct the metric of the small black hole perturbed by the tidal field of the external universe, and the metric of the external universe perturbed by the presence of the black hole. Matching these metrics produces the MiSaTaQuWa equations of motion for the small black hole.Comment: 20 pages, revtex4, 2 figure

    On the Polish doughnut accretion disk via the effective potential approach

    Full text link
    We revisit the Polish doughnut model of accretion disks providing a comprehensive analytical description of the Polish doughnut structure. We describe a perfect fluid circularly orbiting around a Schwarzschild black hole, source of the gravitational field, by the effective potential approach for the exact gravitational and centrifugal effects. This analysis leads to a detailed, analytical description of the accretion disk, its toroidal surface, the thickness, the distance from the source. We determine the variation of these features with the effective potential and the fluid angular momentum. Many analytical formulas are given. In particular it turns out that the distance from the source of the inner surface of the torus increases with increasing fluid angular momentum but decreases with increasing energy function defined as the value of the effective potential for that momentum. The location of torus maximum thickness moves towards the external regions of the surface with increasing angular momentum, until it reaches a maximum an then decreases. Assuming a polytropic equation of state we investigate some specific cases.Comment: 33 pages, 28 figures, 1 table. This is a revised version to meet the published articl

    General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Full text link
    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height HH to cylindrical radius RR ratio of H/R0.21|H/R|\sim 0.2--1) accretion flows around BHs with various dimensionless spins (a/Ma/M, with BH mass MM) and with initially toroidally-dominated (ϕ\phi-directed) and poloidally-dominated (RzR-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough a/M|a/M|, coherent large-scale (i.e. H\gg H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. For sufficiently high a/M|a/M| or low H/R|H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric "magnetically choked accretion flow" (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with 100\gtrsim 100% efficiency for a/M0.9|a/M|\gtrsim 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk quasi-periodic oscillation (JD-QPO) mechanism. The high-frequency QPO has spherical harmonic m=1|m|=1 mode period of τ70GM/c3\tau\sim 70GM/c^3 for a/M0.9a/M\sim 0.9 with coherence quality factors Q10Q\gtrsim 10. [abridged]Comment: 32 pages + acks/appendix/references, 22 figures, 10 tables. MNRAS in press. High-Res Version: http://www.slac.stanford.edu/~jmckinne/mcaf.pdf . Fiducial Movie: http://youtu.be/V2WoJOkIin

    Foundations of Black Hole Accretion Disk Theory

    Get PDF
    This review covers the main aspects of black hole accretion disk theory. We begin with the view that one of the main goals of the theory is to better understand the nature of black holes themselves. In this light we discuss how accretion disks might reveal some of the unique signatures of strong gravity: the event horizon, the innermost stable circular orbit, and the ergosphere. We then review, from a first-principles perspective, the physical processes at play in accretion disks. This leads us to the four primary accretion disk models that we review: Polish doughnuts (thick disks), Shakura-Sunyaev (thin) disks, slim disks, and advection-dominated accretion flows (ADAFs). After presenting the models we discuss issues of stability, oscillations, and jets. Following our review of the analytic work, we take a parallel approach in reviewing numerical studies of black hole accretion disks. We finish with a few select applications that highlight particular astrophysical applications: measurements of black hole mass and spin, black hole vs. neutron star accretion disks, black hole accretion disk spectral states, and quasi-periodic oscillations (QPOs).Comment: 91 pages, 23 figures, final published version available at http://www.livingreviews.org/lrr-2013-

    Ethos of Ambiguity: Artist Teachers and the Transparency Exclusion Paradox

    Get PDF
    Addressing changes in conditions for practitioners that can be related to education policy in England and Wales since 2010, this article presents issues faced by teachers of art and design and theorises responses in practice. The current insistence on transparency in education emerges through policy that audits performativity, in a limiting skills bank. Practitioners in Art and Design are particularly affected by what I term ‘the transparency-exclusion paradox’, as they battle to maintain the subject area and are ‘othered’ by the EBacc and Progress 8. I will discuss an emergent ‘ethos of ambiguity’ among artist-teachers and contemporary artists, with a theoretical basis informed by Beauvoir and Foucault. Empirical data from research participants will be evidenced, to explore strategies of response in inclusive social practice. This article adds to literature that considers the effects of policy in implementation and it contributes to research on creative expressions of ambiguity in the arts

    Model for Particle Masses, Flavor Mixing, and CP Violation Based on Spontaneously Broken Discrete Chiral Symmetry as the Origin of Families

    Get PDF
    We construct extensions of the standard model based on the hypothesis that the Higgs bosons also exhibit a family structure, and that the flavor weak eigenstates in the three families are distinguished by a discrete Z6Z_6 chiral symmetry that is spontaneously broken by the Higgs sector. We study in detail at the tree level models with three Higgs doublets, and with six Higgs doublets comprising two weakly coupled sets of three. In a leading approximation of S3S_3 cyclic permutation symmetry the three Higgs model gives a ``democratic'' mass matrix of rank one, while the six Higgs model gives either a rank one mass matrix, or in the case when it spontaneously violates CP, a rank two mass matrix corresponding to nonzero second family masses. In both models, the CKM matrix is exactly unity in leading approximation. Allowing small explicit violations of cyclic permutation symmetry generates small first family masses in the six Higgs model, and first and second family masses in the three Higgs model, and gives a non-trivial CKM matrix in which the mixings of the first and second family quarks are naturally larger than mixings involving the third family. Complete numerical fits are given for both models, flavor changing neutral current constraints are discussed in detail, and the issues of unification of couplings and neutrino masses are addressed. On a technical level, our analysis uses the theory of circulant and retrocirculant matrices, the relevant parts of which are reviewed.Comment: Revtex, 59 pages including four tables at en
    corecore