118 research outputs found

    F, G, K, M Spectral Standards in the Y Band (0.95-1.11 um)

    Get PDF
    We take advantage of good atmospheric transparency and the availability of high quality instrumentation in the 1 um near-infrared atmospheric window to present a grid of F, G, K, and M spectral standards observed at high spectral resolution (R ~ 25,000). In addition to a spectral atlas, we present a catalog of atomic line absorption features in the 0.95-1.11 um range. The catalog includes a wide range of line excitation potentials, from 0-13 eV, arising from neutral and singly ionized species, most frequently those of Fe I and Ti I at low excitation, Cr I, Fe I, and Si I at moderate excitation, and C I, S I, and Si I having relatively high excitation. The spectra also include several prominent molecular bands from CN and FeH. For the atomic species, we analyze trends in the excitation potential, line depth, and equivalent width across the grid of spectroscopic standards to identify temperature and surface gravity diagnostics near 1 um. We identify the line ratios that appear especially useful for spectral typing as those involving Ti I and C I or S I, which are temperature sensitive in opposite directions, and Sr II, which is gravity sensitive at all spectral types. Ascii versions of all spectra are available to download with the electronic version of the journal.Comment: 40 pages, 21 figures, 4 tables, spectra available for download with source file, updated to mirror published versio

    Diabetes in sub-Saharan Africa – from policy to practice to progress: targeting the existing gaps for future care for diabetes

    Get PDF
    The global prevalence and impact of diabetes has increased dramatically, particularly in sub-Saharan Africa. This region faces unique challenges in combating the disease including lack of funding for noncommunicable diseases, lack of availability of studies and guidelines specific to the population, lack of availability of medications, differences in urban and rural patients, and inequity between public and private sector health care. Because of these challenges, diabetes has a greater impact on morbidity and mortality related to the disease in sub-Saharan Africa than any other region in the world. In order to address these unacceptably poor trends, contextualized strategies for the prevention, identification, management, and financing of diabetes care within this population must be developed. This narrative review provides insights into the policy landscape, epidemiology, pathophysiology, care protocols, medication availability, and health care systems to give readers a comprehensive summary of many factors in these domains as they pertain to diabetes in sub-Saharan Africa. In addition to providing a review of the current evidence available in these domains, potential solutions to address the major gaps in care will be proposed to reverse the negative trends seen with diabetes in sub-Saharan Africa

    Concert recording 2014-04-06

    Get PDF
    [Track 01]. Rigaudon de Dardanus / Jean-Philippe Rameau ; arranged by Corroyez -- [Track 02]. What shall we do with a drunken sailor? / Sea Chantey ; arranged by Worley -- [Track 03]. Quartette / Caryl Florio -- [Track 04]. Diversions in denim. Excursion ; [Track 05]. Idlewood ; [Track 06]. Gallumphery ; [Track 07]. Lornsome ; [Track 08]. Shindig / Carl Anton Wirth -- [Track 09]. Finale from Brandenburg concerto no. 3 / J.S. Bach ; arranged by Laycock -- [Track 10]. Portals / Carl Anton Wirth -- [Track 11]. Moderato ; [Track 12]. Allegro / Erland von Koch

    Gas emissions and subsurface architecture of fault-controlled geothermal systems : a case study of the North Abaya geothermal area

    Get PDF
    Funding: W. Hutchison is funded by a UKRI Future Leaders Fellowship (MR/S033505/1). E.R.D. Ogilvie was supported by a St Andrews Research Internship Scheme (StARIS) grant from the University of St Andrews.East Africa hosts significant reserves of untapped geothermal energy. Exploration has focused on geologically young (<1 Ma) silicic calderas, yet there are many sites of geothermal potential where there is no clear link to an active volcano. The origin and architecture of these systems are poorly understood. Here, we combine remote sensing and field observations to investigate a fault-controlled geothermal play located north of Lake Abaya in the Main Ethiopian Rift. Soil gas CO2 and temperature surveys were used to examine permeable pathways and showed elevated values along a ∌110 m high fault, which marks the western edge of the Abaya graben. Ground temperatures are particularly elevated where multiple intersecting faults form a wedged horst structure. This illustrates that both deep penetrating graben bounding faults and near-surface fault intersections control the ascent of hydrothermal fluids and gases. Total CO2 emissions along the graben fault are ∌300 t d−1; a value comparable to the total CO2 emission from silicic caldera volcanoes. Fumarole gases show ÎŽ13C of −6.4‰ to −3.8‰ and air-corrected 3He/4He values of 3.84–4.11 RA, indicating a magmatic source originating from an admixture of upper mantle and crustal helium. Although our model of the North Abaya geothermal system requires a deep intrusive heat source, we find no ground deformation evidence for volcanic unrest or recent volcanism along the graben fault. This represents a key advantage over the active silicic calderas that typically host these resources and suggests that fault-controlled geothermal systems offer viable prospects for geothermal exploration.Publisher PDFPeer reviewe

    An integrated approach to identify new anti-filarial leads to treat river blindness, a neglected tropical disease

    Get PDF
    Filarial worms cause multiple debilitating diseases in millions of people worldwide, including river blindness. Currently available drugs reduce transmission by killing larvae (microfilariae), but there are no effective cures targeting the adult parasites (macrofilaricides) which survive and reproduce in the host for very long periods. To identify effective macrofilaricides, we carried out phenotypic screening of a library of 2121 approved drugs for clinical use against adul

    Altered early immune response after fracture and traumatic brain injury

    Get PDF
    IntroductionClinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair.MethodsTherefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury.ResultsWe found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers.DiscussionSince mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling

    Small Molecule Inhibitors of Metabolic Enzymes Repurposed as a New Class of Anthelmintics

    Get PDF
    We thank Qi Wang for her technical assistance related to clustering compounds and identifying representatives for screening. This work was supported by National Institute of Allergy and Infectious Diseases (NIAID) grant AI081803 to M.M. The study was also partly supported by NIAID grant AI056189 to R.V.A.Peer reviewedPostprin

    The long noncoding RNA lncNB1 promotes tumorigenesis by interacting with ribosomal protein RPL35

    Get PDF
    The majority of patients with neuroblastoma due to MYCN oncogene amplification and consequent N-Myc oncoprotein over-expression die of the disease. Here our analyses of RNA sequencing data identify the long noncoding RNA lncNB1 as one of the transcripts most over-expressed in MYCN-amplified, compared with MYCN-non-amplified, human neuroblastoma cells and also the&nbsp;most over-expressed in neuroblastoma compared with all other cancers. lncNB1 binds to the ribosomal protein RPL35 to enhance E2F1 protein synthesis, leading to DEPDC1B gene transcription. The GTPase-activating protein DEPDC1B induces ERK protein phosphorylation and N-Myc protein stabilization. Importantly, lncNB1 knockdown abolishes neuroblastoma cell clonogenic capacity in vitro and leads to neuroblastoma tumor regression in mice, while high levels of lncNB1 and RPL35 in human neuroblastoma tissues predict poor patient prognosis. This study therefore identifies lncNB1 and its binding protein RPL35 as key factors for promoting E2F1 protein synthesis, N-Myc protein stability and N-Myc-driven oncogenesis, and as therapeutic targets

    Global Atmospheric Budget of Acetone: Air-Sea Exchange and the Contribution to Hydroxyl Radicals

    Get PDF
    Acetone is one of the most abundant oxygenated volatile organic compounds (VOCs) in the atmosphere. The oceans impose a strong control on atmospheric acetone, yet the oceanic fluxes of acetone remain poorly constrained. In this work, the global budget of acetone is evaluated using two global models: CAM‐chem and GEOS‐Chem. CAM‐chem uses an online air‐sea exchange framework to calculate the bidirectional oceanic acetone fluxes, which is coupled to a data‐oriented machine‐learning approach. The machine‐learning algorithm is trained using a global suite of seawater acetone measurements. GEOS‐Chem uses a fixed surface seawater concentration of acetone to calculate the oceanic fluxes. Both model simulations are compared to airborne observations from a recent global‐scale, multiseasonal campaign, the NASA Atmospheric Tomography Mission (ATom). We find that both CAM‐chem and GEOS‐Chem capture the measured acetone vertical distributions in the remote atmosphere reasonably well. The combined observational and modeling analysis suggests that (i) the ocean strongly regulates the atmospheric budget of acetone. The tropical and subtropical oceans are mostly a net source of acetone, while the high‐latitude oceans are a net sink. (ii) CMIP6 anthropogenic emission inventory may underestimate acetone and/or its precursors in the Northern Hemisphere. (iii) The MEGAN biogenic emissions model may overestimate acetone and/or its precursors, and/or the biogenic oxidation mechanisms may overestimate the acetone yields. (iv) The models consistently overestimate acetone in the upper troposphere‐lower stratosphere over the Southern Ocean in austral winter. (v) Acetone contributes up to 30–40% of hydroxyl radical production in the tropical upper troposphere/lower stratosphere
    • 

    corecore