114 research outputs found

    Developing a real time sensing system to monitor bacteria in wound dressings

    Get PDF
    Infection control is a key aspect of wound management strategies. Infection results in chemical imbalances and inflammation in the wound and may lead to prolonged healing times and degradation of the wound surface. Frequent changing of wound dressings may result in damage to healing tissues and an increased risk of infection. This paper presents the first results from a monitoring system that is being developed to detect presence and growth of bacteria in real time. It is based on impedance sensors that could be placed at the wound-dressing interface and potentially monitor bacterial growth in real time. As wounds can produce large volumes of exudate, the initial system reported here was developed to test for the presence of bacteria in suspension. Impedance was measured using disposable silver-silver chloride electrodes. The bacteria Staphylococcus aureus were chosen for the study as a species commonly isolated from wounds. The growth of bacteria was confirmed by plate counting methods and the impedance data were analysed for discernible differences in the impedance profiles to distinguish the absence and/or presence of bacteria. The main findings were that the impedance profiles obtained by silver-silver chloride sensors in bacterial suspensions could detect the presence of high cell densities. However, the presence of the silver-silver chloride electrodes tended to inhibit the growth of bacteria. These results indicate that there is potential to create a real time infection monitor for wounds based upon impedance sensing

    Amplifier spurious input current components in electrode-electrolyte interface impedance measurements

    Get PDF
    BACKGROUND: In Impedance Microbiology, the time during which the measuring equipment is connected to the bipolar cells is rather long, usually between 6 to 24 hrs for microorganisms with duplication times in the order of less than one hour and concentrations ranging from 10(1 )to 10(7 )[CFU/ml]. Under these conditions, the electrode-electrolyte interface impedance may show a slow drift of about 2%/hr. By and large, growth curves superimposed on such drift do not stabilize, are less reproducible, and keep on distorting all over the measurement of the temporal reactive or resistive records due to interface changes, in turn originated in bacterial activity. This problem has been found when growth curves were obtained by means of impedance analyzers or with impedance bridges using different types of operational amplifiers. METHODS: Suspecting that the input circuitry was the culprit of the deleterious effect, we used for that matter (a) ultra-low bias current amplifiers, (b) isolating relays for the selection of cells, and (c) a shorter connection time, so that the relays were maintained opened after the readings, to bring down such spurious drift to a negligible value. Bacterial growth curves were obtained in order to test their quality. RESULTS: It was demonstrated that the drift decreases ten fold when the circuit remained connected to the cell for a short time between measurements, so that the distortion became truly negligible. Improvement due to better-input amplifiers was not as good as by reducing the connection time. Moreover, temperature effects were insignificant with a regulation of ± 0.2 [°C]. Frequency did not influence either. CONCLUSION: The drift originated either at the dc input bias offset current (I(os)) of the integrated circuits, or in discrete transistors connected directly to the electrodes immersed in the cells, depending on the particular circuit arrangement. Reduction of the connection time was the best countermeasure

    Absorbance based light emitting diode optical sensors and sensing devices

    Get PDF
    The ever increasing demand for in situ monitoring of health, environment and security has created a need for reliable, miniaturised sensing devices. To achieve this, appropriate analytical devices are required that possess operating characteristics of reliability, low power consumption, low cost, autonomous operation capability and compatibility with wireless communications systems. The use of light emitting diodes (LEDs) as light sources is one strategy, which has been successfully applied in chemical sensing. This paper summarises the development and advancement of LED based chemical sensors and sensing devices in terms of their configuration and application, with the focus on transmittance and reflectance absorptiometric measurements

    ELECTRICAL TECHNIQUES | Food Spoilage Flora and Total Viable Count

    No full text

    ELECTRICAL TECHNIQUES | Introduction

    No full text
    corecore