106 research outputs found

    RĂ©-enchantons le monde

    Get PDF
    La société actuelle ne contribue pas à une qualité de vie optimale. Un changement est inéluctable pour répondre à l'enjeu planétaire de la survie de l'humanité dans notre contexte d'anthropocène. Cette présentation propose une méthodologie systémique d'émergence –énaction- d'une utopie humanologique dans laquelle l'Humain prime les considérations financières. À titre d'exemple 3 mesures'simples' sont examinées et l'observation de leurs interactions est proposée pour vérifier si elles peuvent générer une société plus empathique

    Climate, Environment and Food Connections – Interdisciplinary Perspectives on Societal Resilience. International Workshop 19–21 September 2023, Uppsala University

    Get PDF
    The workshop aims at interdisciplinary exchange concerning the drivers of climate and environmental change as well as the societal responses towards these changes across time and space. Through land use and food production human societies have been transforming their environments at least since the transition to agriculture (Southwest Asia/Europe ca. 9000-3500 BC). At the same time food production systems have always been vulnerable to climate and environmental change, which might alter important variables such as the availability of water, the presence of pests or other crucial ecosystem services. Understanding the causes and effects between the different factors of change, however, is far from straightforward and requires interdisciplinary research. Today, there is an unprecedented amount of data on past climate change, on human cultural evolution and human-environment interactions in different fields. Climate and environmental indicators (so called proxies) preserved in e.g., sediments, ice cores or speleothems help to trace past climate and environmental change. Archaeological data offers understandings of human behaviour and bio-cultural interactions in the deep past. Case studies and forecasts might reveal current and past vulnerabilities, mitigation strategies and adaptations to environmental change. Understanding the drivers of such dynamics and how human societies responded might help build resilient pathways for the future. The workshop seeks to address questions, such as: - What can we learn about the past climate from natural archives and what are their limitations? - How can human impact on the environment be disentangled from other drivers of environmental change? - How did and do societies react towards climate and environmental change and what helps to build resilience? - How did and does climate change affect food-systems and what can be learned from past and present examples

    Last Interglacial Climate in Northern Sweden—Insights from a Speleothem Record

    Get PDF
    Continental records with absolute dates of the timing and progression of climatic conditions during the Last Interglacial (LIG) from northern Europe are rare. Speleothems from northern Europe have a large potential as archives for LIG environmental conditions since they were formed in sheltered environments and may be preserved beneath ice sheets. Here, we present δ13C and δ18O values from speleothem Kf-21, from Korallgrottan in Jämtland (northwest Sweden). Kf-21 is dated with five MC-ICPMS U-Th dates with errors smaller than ~1 ka. Kf-21 started forming at ~130.2 ka and the main growth phase with relatively constant growth rates lasted from 127.3 ka to 124.4 ka, after which calcite formation ceased. Both δ13C and δ18O show rapid shifts but also trends, with a range of values within their Holocene counterparts from Korallgrottan. Our results indicate an early onset of the LIG in northern Europe with ice-free conditions at ~130 ka. Higher growth rates combined with more negative δ18O values between ~127.3 and 126.8 ka, interpreted here as warmer and more humid conditions, as well as indications of a millennial-scale cold spell centered at 126.2 ka, resemble findings from speleothem records from other parts of Europe, highlighting that these were regional scale climatic patterns

    Holocene hydro-climatic variability in the Mediterranean: A synthetic multi-proxy reconstruction

    Get PDF
    Here we identify and analyze proxy data interpreted to reflect hydro-climatic variability over the last 10,000 years from the Mediterranean region to (1) outline millennial and multi-centennial-scale trends and (2) identify regional patterns of hydro-climatic variability. A total of 47 lake, cave, and marine records were transformed to z-scores to allow direct comparisons between sites, put on a common time scale, and binned into 200-year time slices. Six different regions were identified based on numerical and spatial analyzes of z-scores: S Iberia and Maghreb, N Iberia, Italy, the Balkans, Turkey, and the Levant, and the overall hydro-climate history of each region was reconstructed. N Iberia is largely decoupled from the five other regions throughout the Holocene. Wetter conditions occur in the five other regions between 8500 and 6100 yr BP. After 6000 yr BP, climate oscillated until around 3000 ± 300 yr BP, which seems to have been the overall driest period in the eastern Mediterranean and North Africa. In contrast, Italy and N Iberia seem to have remained wetter during this period. In addition, non-metric multidimensional scaling (nMDS) was applied to 18 long, continuous climate z-score records that span the majority of the Holocene. nMDS axes 1 and 2 illustrate the main trends in the z-score data. The first axis captures a long-term development of drier condition in the Mediterranean from 7900 to 3700 yr BP. Rapid shifts occur in nMDS axis 2 at 6700–6300 BP, 4500–4300 BP, and 3500–3300 BP indicating centennial-scale climate change. Our synthesis highlights a dominant south/east versus north/west Mediterranean hydro-climate dipole throughout the Holocene and therefore confirms that there was no single climate trajectory characterizing the whole Mediterranean basin during the last 10 millennia

    Last Interglacial Climate in Northern Sweden—Insights from a Speleothem Record

    Get PDF
    Continental records with absolute dates of the timing and progression of climatic conditions during the Last Interglacial (LIG) from northern Europe are rare. Speleothems from northern Europe have a large potential as archives for LIG environmental conditions since they were formed in sheltered environments and may be preserved beneath ice sheets. Here, we present δ13C and δ18O values from speleothem Kf-21, from Korallgrottan in Jämtland (northwest Sweden). Kf-21 is dated with five MC-ICPMS U-Th dates with errors smaller than ~1 ka. Kf-21 started forming at ~130.2 ka and the main growth phase with relatively constant growth rates lasted from 127.3 ka to 124.4 ka, after which calcite formation ceased. Both δ13C and δ18O show rapid shifts but also trends, with a range of values within their Holocene counterparts from Korallgrottan. Our results indicate an early onset of the LIG in northern Europe with ice-free conditions at ~130 ka. Higher growth rates combined with more negative δ18O values between ~127.3 and 126.8 ka, interpreted here as warmer and more humid conditions, as well as indications of a millennial-scale cold spell centered at 126.2 ka, resemble findings from speleothem records from other parts of Europe, highlighting that these were regional scale climatic patterns

    Late Bronze Age climate change and the destruction of the Mycenaean Palace of Nestor at Pylos

    Get PDF
    This paper offers new high-resolution oxygen and carbon isotope data from Stalagmite S1 from Mavri Trypa Cave, SW Peloponnese. Our data provide the climate background to the destruction of the nearby Mycenaean Palace of Nestor at Pylos at the transition from Late Helladic (LH) IIIB to LH IIIC, similar to 3150-3130 years before present (before AD 1950, hereafter yrs BP) and the subsequent period. S1 is dated by 24 U-Th dates with an averaged precision of +/- 26 yrs (2s), providing one of the most robust paleoclimate records from the eastern Mediterranean for the end of the Late Bronze Age (LBA). The delta O-18 record shows generally wetter conditions at the time when the Palace of Nestor at Pylos was destroyed, but a brief period of drier conditions around 3200 yrs BP may have disrupted the Mycenaean agricultural system that at the time was likely operating close to its limit. Gradually developing aridity after 3150 yrs BP, i.e. subsequent to the destruction, probably reduced crop yields and helped to erode the basis for the reinstitution of a central authority and the Palace itself

    Lateglacial and Holocene climate and environmental change in the northeastern Mediterranean region: Diatom evidence from Lake Dojran (Republic of Macedonia/Greece)

    Get PDF
    The juncture between the west-east and north-south contrasting Holocene climatic domains across the Mediterranean is complex and poorly understood. Diatom analysis of Lake Dojran (Republic of Macedonia/Greece) provides a new insight into lake levels and trophic status during the Lateglacial and Holocene periods in the northeastern Mediterranean. Following a very shallow or even desiccated state at the core base at ca. 12,500 cal yr BP, indicated by sedimentological and hydro-acoustic data, diatoms indicate lake infilling, from a shallow state with abundant benthos to a plankton-dominated relatively high lake level and eutrophic state thereafter. Diatom-inferred shallowing between ca. 12,400 - 12,000 cal yr BP and a very low lake level and eutrophic, oligosaline state between ca. 12,000 - 11,500 cal yr BP provide strong evidence for Younger Dryas aridity. The earliest Holocene (ca. 11,500 - 10,700 cal yr BP) was characterised by a high lake level, followed by a lake-level reduction and increased trophic level between ca. 10,700-8,500 cal yr BP. The lake was relatively deep and exhibited peak Holocene trophic level between ca. 8,500-3,000 cal yr BP, becoming shallow thereafter. The diatom data provide more robust evidence and strengthen previous lake-level interpretation based on sedimentological and geochemical data during the earliest, mid and late Holocene, and also clarify previous uncertainty in interpretation of Lateglacial and early-Holocene lake-level change. Our results are also important in disentangling regional climate effects from local catchment dynamics during the Holocene, and to this end we exploit extant regional palynological evidence for vegetation change in the highlands and lowlands. The importance of seasonality in driving Holocene climate change is assessed by reference to the summer and winter latitudinal temperature gradient (LTG) model of Davis and Brewer (2009). We suggest that increased precipitation drove the high lake level during the earliest Holocene. The early- Holocene low lake level and relatively high trophic state may result climatically from high seasonality of precipitation and locally from limited, nutrient-rich catchment runoff. We argue that the mid- Holocene relatively deep and eutrophic state was driven mainly by local vegetation succession and associated changes in catchment processes, rather than showing a close relationship to climate change. The late-Holocene shallow state may have been influenced by a temperature-induced increase in evaporative concentration, but was coupled with clear evidence for intensified human impact. This study improves understanding of Lateglacial and Holocene climate change in the northeastern Mediterranean, suggests the important role of the LTG on moisture availability during the Holocene, and clarifies the influence of catchment processes on palaeohydrology

    Pollen-inferred regional vegetation patterns and demographic change in Southern Anatolia through the Holocene

    Get PDF
    Southern Anatolia is a highly significant area within the Mediterranean, particularly in terms of understanding how agriculture moved into Europe from neighbouring regions. This study uses pollen, palaeoclimate and archaeological evidence to investigate the relationships between demography and vegetation change, and to explore how the development of agriculture varied spatially. Data from 21 fossil pollen records have been transformed into forested, parkland and open vegetation types using cluster analysis. Patterns of change have been explored using non-metric multidimensional scaling (nMDS) and through analysis of indicator groups, such as an Anthropogenic Pollen Index, and Simpson’s Diversity. Settlement data, which indicate population densities, and summed radiocarbon dates for archaeological sites have been used as a proxy for demographic change. The pollen and archaeological records confirm that farming can be detected earlier in Anatolia in comparison with many other parts of the Mediterranean. Dynamics of change in grazing indicators and the OJCV (Olea, Juglans, Castanea and Vitis) index for cultivated trees appear to match cycles of population expansion and decline. Vegetation and land use change is also influenced by other factors, such as climate change. Investigating the early impacts of anthropogenic activities (e.g. woodcutting, animal herding, the use of fire and agriculture) is key to understanding how societies have modified the environment since the mid–late Holocene, despite the capacity of ecological systems to absorb recurrent disturbances. The results of this study suggest that shifting human population dynamics played an important role in shaping land cover in central and southern Anatolia
    • …
    corecore