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Abstract

This paper offers new high-resolution oxygen and carbon isotope data from Stalagmite S1

from Mavri Trypa Cave, SW Peloponnese. Our data provide the climate background to the

destruction of the nearby Mycenaean Palace of Nestor at Pylos at the transition from Late

Helladic (LH) IIIB to LH IIIC, ~3150–3130 years before present (before AD 1950, hereafter

yrs BP) and the subsequent period. S1 is dated by 24 U-Th dates with an averaged precision

of ±26 yrs (2σ), providing one of the most robust paleoclimate records from the eastern Med-

iterranean for the end of the Late Bronze Age (LBA). The δ18O record shows generally wet-

ter conditions at the time when the Palace of Nestor at Pylos was destroyed, but a brief

period of drier conditions around 3200 yrs BP may have disrupted the Mycenaean agricul-

tural system that at the time was likely operating close to its limit. Gradually developing arid-

ity after 3150 yrs BP, i.e. subsequent to the destruction, probably reduced crop yields and

helped to erode the basis for the reinstitution of a central authority and the Palace itself.

1. Introduction

The impact of past climate variability and abrupt climate change on ancient human societies is

an ongoing debate. This debate often focuses around 1) certain time periods, commonly

around so-called climate events, i.e. times when the climate rapidly changed, e.g. at 8200, 4200

and 3200 years before present (before AD 1950, hereafter yrs BP), and 2) archaeologically rich

areas, such as SE Mexico (Yucatan Peninsula), the Indus Valley and the eastern Mediterranean

[1–6]. In the eastern Mediterranean, there has been intense discussion about the impact of cli-

mate change on the fall of the Akkadian Empire and the end of the Late Bronze Age (LBA)

occurring at ~4200 and ~3200 yrs BP respectively [7–18].

The debate about the causes of the rapid demise of many societies in the eastern Mediterra-

nean at the end of the LBA includes a number of factors such as climate change, earthquakes,
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famine, political instability and/or invasions by the infamous Sea Peoples [17,19–23]. Lately

the number of studies investigating the role played by climate at the end of the LBA in the east-

ern Mediterranean has increased and a number of them suggest aridity as a major factor

[9,10,12,14,15,18]. Paleoclimate data, primarily from Cyprus and the Levant, suggest that a

300-year period of arid conditions that began around 3200 yrs BP led to reductions in agricul-

tural productivity and subsequently contributed to a general socioeconomic crisis in the east-

ern Mediterranean [10,14,15,18]. However, it was recently pointed out that many of these

datasets do not have sufficient chronological resolution to reliably tie climate information to

archaeological data [20]. Despite chronological uncertainties and the fact that attributing

sociopolitical changes to drought can be seen as overly simplistic and deterministic [21,24,25],

the idea of widespread aridity has recently gained a prominent position in discussions about

LBA societal change in the eastern Mediterranean as well as on the Greek mainland. Even

though direct climate evidence from mainland Greece has not been available for this period, it

has been suggested that the destruction of the Mycenaean Palatial centers towards the end of

the LBA should be viewed in light of the severe aridity recorded for this period elsewhere see

e.g. [10]. In this paper, we present new high-resolution paleoclimate data extracted from a cave

located just off the coast of the Greek mainland, in close proximity to one of the major Myce-

naean Palatial centers.

During the LBA the Mycenaean culture made a strong imprint on a large part of the Aegean

world and in particular on the Peloponnesian Peninsula in southern Greece, where a number

of palaces functioned as administrative and economic centers [26,27]. One of these was the

Mycenaean Palace of Nestor at Pylos, located in present day Messinia in the SW Peloponnese,

which controlled large areas of land in that region. The Mycenaean culture reached its zenith

between approximately 3350 and 3150 yrs BP. The destruction of the Mycenaean palaces

throughout the Peloponnese occurred at the transition between the Late Helladic (LH) IIIB

(~3280 to ~3150 yrs BP) and LH IIIC (~3150 to ~3020 yrs BP). It was followed by a period of

abrupt decline, during which the use of writing (Linear B) and complex forms of political, eco-

nomic and social organization disappeared, settlement patterns changed, and the size and

number of sites were drastically reduced [26–32]. However, some Mycenaean cultural traits

continued throughout the LH IIIC period [26,29]. In addition, there is also evidence for

rebuilding at the Mycenaean palace at Tiryns, some 120 km to the NE of Pylos [33]. By the

Protogeometric period (~3020 yrs BP), new social frameworks were established displacing

Mycenaean traditions [26,29]. The destruction of the palaces has often been seen as the prime

marker for societal change on the mainland. However, the broader question is not why the pal-

aces were destroyed, but rather why they were not rebuilt [12]. Several factors, among them

rapid climate change, have been discussed as triggers for the sudden destruction of the palaces

and the inability of Mycenaean society to recover [26,29,30].

The Mycenaean Palace of Nestor at Pylos provides a rare case study where textual and

archaeological evidence can be combined to offer a more complete picture of the local econ-

omy (S1 File). The Palace functioned as the central administrative center of ancient Messinia

and played a crucial role in the economy, but it did not maintain control over every aspect

[34,35]. Mycenaean palaces were redistributive centers, although in a more nuanced manner

than traditionally thought, based upon their ability to mobilize resources [36–38]. The econ-

omy was organized around the production, acquisition and distribution of raw materials and

prestige goods, such as textiles, i.e., linen and wool, and perfumed olive oil [34,35]. The Palace

did not, however, maintain control over the production of all staple goods; for example Linear

B tablets indicate that there were local, independent small-scale producers of cereal crops

[34,35]. The agricultural economy of the area was largely rainfed and land use would have ran-

ged from large-scale flax fields and olive groves, possibly grazed by sheep, to small-scale units
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of land devoted to cereal production [34,35]. The importance of land in the Pylian economy is

evident from textual evidence, much of which is concerned with landholdings and crops, and

some of the land near the Palace is measured in seed-grain [36,38]. Although the Mycenaeans

were familiar with hydrological engineering, there was a strong dependence on winter and

spring precipitation for crop yields, a dependence that carries through to modern times

[39,40].

Throughout the LH IIIB period the increase in the size and number of sites in the area sur-

rounding the Palace is a good indicator of population growth in Messinia (S1 File). Such a

demographic increase likely added additional stresses to the agricultural system and forced the

cultivation of marginal lands. Agricultural products sustained the majority of the population

of the kingdom of Pylos, and a dynamic relationship existed between the agricultural and

social systems [41]. During the height of the LH IIIB period, the economy was a finely tuned

system that depended on the proper functioning of all its components: agriculture, redistribu-

tion and tax collection [41].

The richness of the archaeological and textual evidence from the Peloponnese has, up to

now, not been matched by the quality of the paleoclimate information from the area [42]. This

means that inferences about socio-environmental links rely on paleoclimate data from other

areas of the eastern Mediterranean, which, considering local variability, is problematic [11,42].

Here, we present a high-resolution, stable isotope based climate record from stalagmite S1 that

formed from 4687 to 1297 yrs BP, in three discrete growth periods. The record covers large

parts of the Greek Bronze Age, during which the Peloponnese saw the development of inter-

connected and complex societies and the intensification of agriculture, although with strong

regional variability [43–45]. The record further covers the period extending from late Hellenis-

tic times through the transition to the Byzantine period. The S1 proxy record sheds new light

on the effects of climate on, the large scale social reorganization that occurred ~4200 yrs BP,

the expansion in the area embraced by Mycenaean civilization ~3400 yrs BP, the subsequent

destruction of the Mycenaean palaces ~3200 yrs BP, and the expansion in the number of rural

settlements in the late Roman period. Here, however, we evaluate and investigate principally

the chronological fit between variability in climate and the destruction of the Mycenaean Pal-

ace at Pylos and the subsequent sociopolitical change that took place at the end of the palatial

period on the Greek mainland.

2. Methods and results

Candle-shaped stalagmite S1, which is 230 mm in length (Fig 1), was collected in Mavri Trypa

(Black Hole) Cave, located in the central part of Schiza Island, ~4 km off the SW coast of the

Peloponnese (N36.7360˚ E21.7596˚) (Fig 2; S2 File and S3 File). Permission for visiting and

sampling the cave was issued by the Ephorate of Palaeoanthropology and Speleology, Athens,

Greece. The cave formed in bedded Paleocene-Eocene limestones at 70 m above sea level.

Twenty-four subsamples, 50–100 mg each, for U-Th dating [46,47] were milled along growth

layers (S3 File). For carbon and oxygen stable isotopic measurements, subsamples were milled

along a profile parallel to the central growth axis at 0.3-2-mm intervals (S3 File). Results are

reported relative to the Vienna Pee Dee Belemnite (VPDB) standard.

The corrected U-Th ages for S1 are precise with an average uncertainty <±1%. Twenty of

24 samples fall in stratigraphical order within uncertainties. High [230Th/232Th] values in all 24

samples indicate that only minimal age corrections are needed [48] (Fig 3; S1 Table, S4 File).

S1 mainly consists of open columnar calcite. Micrite and new crystal nucleation indicate

growth interruptions at 47.7 and 197.5 mm from the stalagmite top (S1 Fig, S4 File). Large

chronological shifts in adjacent U-Th samples at these levels indicate that these interruptions
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Fig 1. Image of stalagmite S1. Visible are the two sides of the central slab. Image on left shows the location of the samples milled for U-Th

dating together with the results. Image on right shows holes from conventional drilling for samples for stable isotope analysis, together with

tracks from sub-millimeter micromilling (highlighted by green lines). Red lines in both images indicate the position of inferred depositional

hiatuses.

https://doi.org/10.1371/journal.pone.0189447.g001
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are associated with extended growth hiatuses. Age-depth modeling using StalAge [49] (v. 1.0)

suggests that stalagmite S1 formed between 4687±68 and 1297±103 yrs BP in three individual

growth periods: from 4687±68 to 4182±33 yrs BP (#1), from 3813±370 to 2953±63 yrs BP (#2),

and from 2067±27 to 1297±103 yrs BP (#3) (Fig 3; S4 File).

δ18O and δ13C range from -3.74 to -5.99% and from -6.15 to -11.07%, respectively (S2 Fig,

S3 File, S1 Dataset). There is a positive correlation between δ18O and δ13C along the growth

axis in all three growth periods: #1 r = 0.80 (n = 113), #2 r = 0.84 (n = 146), and #3 r = 0.66

(n = 96), all significant at the 95% level.
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3. Interpretation and discussion

Speleothem δ18O can, under certain conditions, be a good proxy for hydro-climatic change.

Drip water δ18O, which reflects the isotopic composition of infiltrating meteoric water, in

combination with processes occurring during percolation, controls speleothem δ18O [50]. A

number of processes that relate to the climate-system control precipitation δ18O, including

precipitation amount and seasonality, moisture source and transport distance, as well as con-

densation temperature [51]. Further processes in the atmosphere, such as the proportions of

low-intensity stratiform vs high-intensity convective precipitation, altitudinal transportation

of raindrops within rainfall systems, and evaporation below the cloud base, have also been

shown to affect δ18O in precipitation, highlighting the complex nature of δ18O values in mete-

oric waters [52,53].

Previous studies of δ18O in speleothems from the eastern Mediterranean demonstrate that

the precipitation amount often is a main control when sea surface conditions remain close to

constant [54–66]. In the Peloponnese, precipitation δ18O values are more depleted during win-

ter because of lower surface air temperature. However, in an annual cycle, there is a negative

correlation between precipitation δ18O and rainfall amount, i.e. depletion increases with the

precipitation amount, especially when the monthly average is below 100 mm [67]. A series of

stable oxygen and hydrogen measurements on precipitation samples collected ~40 km north

of Mavri Trypa Cave between January 2012 and September 2015 confirm the inverse relation-

ship between precipitation amount and δ18O depletion [68]. A comparison between meteoro-

logical data and δ18O values from a modern stalagmite from Kapsia Cave in the central

Peloponnese reveals a strong connection between δ18O depletion and an increase in the pre-

cipitation amount during the period of positive water excess (ONDJFMA) [69]. Considering

the thickness of the bedrock above Mavri Trypa Cave, which is around 40 m, and that the

catchment area for the karstic aquifer is relatively confined, given its location on an island, the

climate signal from Mavri Trypa is not affected by aquifer mixing processes to a large extent.

This could, however, also result in a relatively quick drying out of the aquifer under dry climate

conditions. The two growth hiatuses and the inferred termination of deposition in Stalagmite

S1 are likely a result of the aquifer drying out and they occur after longer periods of enriched

δ18O and δ13C values.

Speleothem δ13C remains more complex to interpret than δ18O. Recent studies e.g. [70]

have taken the interpretation beyond the influence of vegetation shifts from C3 to C4 [71,72] to

a better understanding of the role of prior calcite precipitation (PCP) [73], the dead carbon

component from the host rock, atmospheric CO2, the CO2 of the soil zone, and CO2 resulting

from the decay of organic material found within the vadose zone [74] on speleothem δ13C. In

the Mediterranean region and other semi-arid areas, depleted δ13C in speleothems has been

linked to increased biological activity, including soil microbial activity, above the cave

[54,56,75–77]. Biological activity, in turn, is linked to precipitation in many areas of the Medi-

terranean, including our study area. Thus positive covariation between δ13C values and hydro-

climate variability, as recorded by δ18O, is to be expected unless human activities above the

cave, such as grazing or deforestation, have affected the vegetation [54,56,64,75,78].

The strong correlation between δ18O and δ13C values in the three growth periods indicates

that Stalagmite S1 did not form in isotopic equilibrium with its parent drip water. Few stalag-

mites form under true equilibrium conditions [79], especially in semi-arid environments, and

kinetic effects should be considered [77,80]. Kinetic fractionation is mainly driven by evapora-

tion of drip water emerging in the cave due to low relative humidity (RH) in the cave air, and

by the degassing of CO2 from the parent water due to differences in CO2 partial pressure

(pCO2) between water and cave air. During drier climate conditions, δ18O will be enriched by
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increased evaporation in the epikarst and in the cave due to low RH, and δ13C will be enriched

by increased degassing connected to reduced drip rates [81], enhancing any signal of drought

in the stalagmite. Additionally, PCP may enrich δ13C values and since this factor typically is

enhanced during drier climate conditions, it also acts to enhance the enrichment signature of

δ13C during more arid phases. In short, a strong positive correlation between δ18O and δ13C is

expected since both proxies respond to similar environmental drivers and similarly to kinetic

effects. In addition, the closed nature of the cave and the high RH in the cave air (S2 File)

should act to significantly reduce the effects of kinetic fractionation.

Based on the above discussion we suggest that the δ18O in the stalagmite from Mavri Trypa

Cave should be interpreted as a signal for moisture, although there may be an influence of

kinetic fractionation, with more negative δ18O values indicating wetter conditions and vice

versa. The δ13C signal from Mavri Trypa may tentatively be used as a proxy for biological activ-

ity above the cave linked to moisture availability. However, in this paper we favor the use of

δ18O over δ13C for making interpretations about past hydro-climatic variability, although we

use the δ13C signal to better understand the δ18O.

3.1 Climate during the Bronze Age and from the Hellenistic to the

Byzantine period

The Mavri Trypa δ18O record is supported by other stable isotope records from the Mediterra-

nean region indicating a large-scale control on the isotopic signal [58,65,75,76,82–85] (S3 Fig).

The δ18O and δ13C results from Mavri Trypa indicate relatively wet conditions from 4700

yrs BP to 4500 yrs BP, followed by a transitional period with large isotopic fluctuations from

4500 yrs BP to 4300 yrs BP leading towards drier conditions (Fig 4; S2 Fig). A diatom record

from the nearby Agios Floros wetland also shows a development of aridity from 4500 yrs BP

[86]. Stable arid conditions in Mavri Trypa occur from 4300 yrs BP until stalagmite S1 stops

growing at 4200 yrs BP. There is widespread evidence from the eastern Mediterranean region

in general for more arid conditions around 4200 yrs BP [42,58].

Growth in stalagmite S1 resumes around 3800 yrs BP with δ18O values indicating wetter

conditions (Fig 4). The resumption concurs with a period of wetter conditions suggested by

other proxy data from the Peloponnese [45]. The generally wetter conditions indicated by our

record last until 3150 yrs BP, although interrupted by two periods of drier conditions. The first

drier phase develops rapidly at 3550 yrs BP and lasts until 3400 yrs BP. This phase is roughly

divided in half by a brief return to wetter conditions at 3450 yrs BP. The second dry phase also

develops rapidly and is centered around 3200 yrs BP (Fig 4) (see extended discussion below).

The drier periods are also characterized by enriched δ13C values interpreted as indicating

reduced biological activity above the cave, supporting the δ18O signal (S2 Fig). In Mavri Trypa a

transition towards drier conditions starts ~3150 yrs BP, marking the gradual end of the wetter

period. The transitional period is one of high-amplitude isotopic fluctuations on a decadal scale,

superimposed on a centennial scale trend towards less negative δ18O values, indicating reduced

precipitation. Overall more arid conditions are evident from 3100 yrs BP until 2950 yrs BP

when growth in S1 terminates again. At this time, there is regional and local evidence from the

eastern and central Mediterranean for drier conditions e.g. [42,45]. High-resolution stable iso-

tope records from Jeita Cave [65], Renella Cave [58], Sofular Cave [75,76], and Nar Gölü [85] all

show that aridity starts to develop around 3200 years BP but that the most arid conditions only

occur after 3200 yrs BP (S3 Fig). From a chronological perspective, these records are some of

the most robust paleoclimate records for the period around 3200 yrs BP (S4 Fig).

The third growth period in the Mavri Trypa stalagmite starts at 2050 yrs BP and coincides

with the Roman Warm Period. The overall enrichment in the δ18O values that occurred during
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the first 200 years of this period likely results from these samples being milled towards the

flank of the stalagmite in this section and is not related to climate (S2 Fig). Other paleoclimate

records from the Peloponnese indicate wetter conditions from ~2550 yrs BP [45,64,86,87]. It is

possible that the duration of the second hiatus in the Mavri Trypa stalagmite is not only a

result of drier conditions, but also relates to the rerouting of water through the bedrock or

human intervention in or near the cave. Following a brief interval of arid conditions just before

1900 yrs BP, a wetter period between 1850 and 1300 yrs BP, which peaks at 1675 yrs BP, is evi-

dent (Fig 4). After 1300 yrs BP there is a rapid change to drier conditions and the stalagmite

stops growing 1297±27 yrs BP. Around this time many records from the eastern and central

Mediterranean indicate drier conditions, and speleothem formation also ceased in Kapsia

Cave in the central Peloponnese and in nearby Alepotrypa Cave, possibly indicating both local

and regional aridity (S3 Fig) [54,64,65,75,76,84,88].
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https://doi.org/10.1371/journal.pone.0189447.g004
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3.2 Climate, the destruction of the Mycenaean Palace of Nestor at Pylos

and the end of the Late Bronze Age

The sampling resolution in the Mavri Trypa record for the period 3350–3000 yrs BP (i.e. much

of the LBA) is on average 5 years and the uncertainty in the age-depth model is on average

±31.5 years, making it one of the most precise paleoclimate records for the LBA in the eastern

Mediterranean (Fig 3, S4 Fig). Thus, the record approaches the criteria Knapp and Manning

[20] argue are necessary in order to reliably compare archaeological events to climate data.

Considering the proximity between Mavri Trypa and the Palace of Nestor, the paleoclimate

information from this cave is pertinent for evaluating the potential impact of climate on the

destruction of that Mycenaean palace and social processes during the subsequent periods. The

archaeological chronology around 3200 yrs BP in the Peloponnese is generally well accepted,

although some uncertainties remain. It is based on the cross-dating of ceramic material with

“fixed points” in Egyptian chronology and contextually secure radiocarbon dates [20,89–91].

We are thus able to rather precisely compare our paleoclimate data with the timing of the

destruction of the Palace of Nestor and the end of the LBA in the Peloponnese.

The destruction of the Palace of Nestor is thought to have occurred ~3150–3130 yrs BP

[27,29,31] (Fig 4). There is no unequivocal evidence for a prolonged period of drier conditions

in the Mavri Trypa record at that time. Instead, it appears that the period around 3150 yrs BP

is one of generally wetter, albeit fluctuating, climate conditions marking the beginning of a

transitional period that leads into a distinct period of drier conditions that exists from ~3100

yrs BP (Fig 4). At the time of the destruction of the Palace there is a very short period of

enriched δ18O values (mainly defined by one measurement point); this fluctuation, however, is

not evident in the δ13C (S2 Fig). Considering the expected contribution of local noise to the

δ18O signal and the lack of response in the δ13C, we suggest this enrichment cannot not be

linked to drought, at least not of the magnitude seen around 3200 yrs BP and after 3100 yrs

BP.

Before the Palace is destroyed, the Mavri Trypa record shows evidence for a drier period

around 3200 yrs BP that lasted ~20 years. This dry period can be firmly placed in the LH IIIB

period and, given the new data from Mavri Trypa, occurs, taking the age uncertainties in to

account, two to eight decades before the palace is destroyed. This dry interval is followed by a

return to wetter conditions, before the transitional period leading towards drier conditions

that begins at 3150 yrs BP. It seems from the Mavri Trypa record that the dry phase around

3200 yrs BP was minor compared to what would come ~100 years later. The record from

Mavri Trypa suggests that it was in the postpalatial period that arid conditions developed, and

that it is only after the Bronze Age, in the Protogeometric period, that very arid conditions

were established (Fig 4). The dry conditions recorded from 3100 yrs BP firmly belong to the

LH IIIC period and likely contributed to the inability of the Mycenaean palaces in the Pelo-

ponnese to reassert their power.

Other paleoclimate records from the Peloponnese do not offer as much detail as the record

from Mavri Trypa for the LH IIIB/LH IIIC transition [45], although a sedimentary record

from the nearby Asea Valley indicates gradually cooling conditions from 3200 to 2700 yrs BP

[87].

The stable isotope record from Mavri Trypa, together with other stable isotope records

from the region, suggests that the end of the LBA (LH IIIC) is marked by increasing aridity but

that it only reached its peak after ~3000 yrs BP.

Where does the new paleoclimate data from Mavri Trypa, with its current age-depth model

and uncertainties, leave us in relation to the possible influence of climate on the destruction of

the Mycenaean Palace of Nestor at Pylos and to the broader question of why it was not rebuilt
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in the LH IIIC period? The drought recorded at 3200 yrs BP clearly precedes the destruction of

the Palace. Evidently the centralized administrative system controlled by the Palace could sur-

vive such a relatively short-term dry period and remain in control. Some fifty years later, how-

ever, when the pronounced period of aridity started to develop, the system would crumble.

Further east, it has been proposed that triggers such as social unrest linked to drought induced

food shortages could have been instrumental in LBA change [14,18] and there are few reasons

to think that the mainly rainfed agricultural system of Messinia was less susceptible to those

stresses. In this area, which naturally suffers from erratic rainfall, one of the principal ways in

which the Palace central authority made themselves essential to small-scale producers was by

providing food security in the case of crop failure or shortfalls during drought [34,39].

Although the record from Mavri Trypa does not offer any clear evidence for altered climate

conditions that could have acted as a trigger for the destruction event, the period of drought

around 3200 yrs BP could have contributed to the destabilization of the political and economic

order. Increased aridity could have led to reduced agricultural output affecting the finely tuned

economic system of a society that was close to, or already, over-extended, rattling the very foun-

dations of the fragile palatial economy (S5 File). Although the palatial society at Pylos survived

the short-term drought around 3200 yrs BP, it may have destabilized, or at least challenged, the

system, which produced archaeologically and textually discernible responses by the Mycenaean

elite. The suggestion of social turbulence and larger scale socioeconomic problems is hinted at

both in the Linear B tablets and other evidence from the Palace; storage was increased and

access to the Palace was restricted shortly before the destruction (S5 File) [36,92]. The new cli-

mate evidence from the Greek mainland, while not directly supporting a climate explanation

for the destruction of the Palace, suggests that drier local conditions was one of several factors

contributing to its demise. Rather than viewing the evidence of climate change as a cause of the

collapse, we view it as part of the process of destabilization that contributed to the palatial

administration’s inability to reconstruct social hierarchies after the destruction. It has been sug-

gested that the largely synchronous abandonment of the palatial centers across the Peloponnese

at the end of the LH IIIB was, rather than an event, a process that took decades, and a short-

term downturn in climate can be seen as one of many drivers [12].

The new data from Mavri Trypa also provides an opportunity to investigate the climate

backdrop to the question of why the Mycenaean elite did not re-form and why the Palace was

not rebuilt. Many signs of political and social collapse are visible in Pylos and Messinia as a

whole after the destruction of the Palace. For instance, there was no urban reconstruction or

subsequent cultural regeneration on the acropolis or in the adjacent lower town at Pylos and a

pronounced depopulation of Messinia is evident from survey results [36]. The clear trend

toward aridity from 3150 yrs BP probably meant a gradual increase in the number of years of

drought, leading to failed crops or strongly reduced yields, and, more importantly, that agri-

cultural productivity in normal and good years was reduced [93]. This in turn meant that it

became increasingly difficult for farmers in Messinia to produce a ‘normal surplus’ that could

be stored and taxed, either directly or socially, which has been argued to be an important

mechanism behind the creation of social elites [39]. In an environment with developing aridity

and reduced crop yields it would have become increasingly difficult to produce the ‘natural

surplus’ that would enable a central authority to reassert itself by providing food relief, or trig-

ger the formation of new social elites. There is, however, evidence for the continuation of

small-scale subsistence farming in Messinia in LH IIIC and through the Early Iron Age (EIA),

albeit at a much reduced scale [34]. The new evidence from Mavri Trypa makes it possible for

the first time to situate the trajectory of events following the destruction of the Mycenaean Pal-

ace of Nestor at Pylos within a period of developing aridity throughout LH IIIC and the early

part of the EIA.
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4. Conclusions

The influence of climate on the Mycenaean world and the destruction of the Palace of Nestor

at Pylos can, for the first time, be assessed through the investigation of a local high-resolution

δ18O record that is the most precisely dated paleoclimate record from the eastern Mediterra-

nean for the end of the LBA.

The Mavri Trypa δ18O record shows little or no unequivocal evidence for drier conditions

when the palace in Pylos is destroyed ~3150–3130 yrs BP, at the transition from LH IIIB to LH

IIIC. While the new paleoclimate evidence from the Greek mainland does not support a clear

chronological synchronism between the destruction of the Mycenaean Palace at Pylos and

drier conditions, as has been suggested previously, it does offer an insight into difficulties that

existed several decades before the collapse of the palatial system.

There is evidence for a dry phase extending for approximately two decades around 3200±30

yrs BP, which can be firmly placed in the LH IIIB period, i.e. before the destruction of the pal-

ace. Evidently the centralized administrative system at Pylos managed to survive that period of

drought, although evidence suggests that cracks were beginning to emerge in the period imme-

diately preceding the palace’s destruction. This dry period was slight in comparison to what

would come 100 years later, both in terms of magnitude and duration, but it nevertheless

would have been felt in the agriculturally dominant palace economy. With the evidence in

hand, the precise reasons for the destruction should be sought beyond climate explanations,

although the effect of the climate should be considered as a contributing factor.

Following the destruction of the Mycenaean Palace at Pylos, there is strong evidence that

climate conditions became progressively more arid during the LH IIIC period, and pro-

nounced aridity is evident at the very end of the LBA and in the Protogeometric period, before

the Mavri Trypa stalagmite stopped growing at 2953±63 yrs BP. We suggest this clear trend

towards drier conditions caused reduced agricultural output, hampering the restoration of a

central authority or the formation of new social elites. Small-scale subsistence agriculture how-

ever, persisted in the area.

For the first time, there are indications that climate may be one mechanism behind the pro-

cess that led to the failure of the Mycenaean way of life in Pylos and there is strong evidence

that developing aridity following the destruction of the Palace made it difficult for social elites

to re-form and for the palatial system to be re-established. One cannot, however, attribute the

collapse of the Mycenaean way of life to a single monolithic cause or event. Instead one should

look for a suite of factors that contributed to the inability of the palatial elite to reconstitute the

political, economic, and social organization that existed at the end of LH IIIB. Climate change

is certainly a critical component in the equation.

Supporting information

S1 Fig. Plate of petrographic thin sections from stalagmite S1. A-D show micrite and new

crystal nucleation (red arrows) at 197.5 mm depth from the top indicating a growth interrup-

tion. A and B show the same slide in crossed polar light and plane-polarized light respectively.

C and D show the same slide in crossed polar light and plane-polarized light respectively. E

and F show new crystal nucleation at 47.7 mm depth from the top in crossed polar light and

plane-polarized light respectively, indicating a growth interruption. At this depth, there is also

an almost perpendicular change in the direction of the growth axis (see Fig 1). G shows a seg-

ment of the area between 55 and 145 mm depth from the top that has a more irregular and

fibrous fabric toward the center compared to the flanks. Green arrows indicate direction of

growth.

(TIF)
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S2 Fig. Stable oxygen (δ18O) and carbon (δ13C) isotopes from stalagmite S1 plotted vs. age.

Thicker black line represents 5-point moving average. Note inverted y-axes.

(PDF)

S3 Fig. Selected high-resolution stable isotope records from eastern and central Mediterra-

nean compared the δ18O record from Mavri Trypa (this study). Bold black lines for each

record represent a running average. The running average was selected for each individual

record to filter the average resolution to ~30 years, the lowest resolution in any record in the

figure, in order to enhance comparability between records. Wetter climate conditions are up

and drier down. Records are organized from west to east. For the δ18O record from Soreq

Cave no running average was calculated for the period of low resolution (i.e. between 3600

and 2000 yrs BP).

Similarly, colored bars indicate possible parallel periods of wetter and drier conditions in other

records from central and eastern Mediterranean. Question marks indicate less certain match-

ing with the record from Mavri Trypa.

(EPS)

S4 Fig. Dating points and uncertainties from selected paleoclimate records from the cen-

tral and eastern Mediterranean around 3200 yrs BP. Renella Cave [58]; Shkodra Lake [84];

Mavri Trypa (this study); Sofular Cave [75,76], and Jeita Cave [65]. The δ18O record from Nar

Gölü [85] is not represented in this graph because the chronology is based on the counting of

annual lamina. There is only one U-Th age (3770±310 [83]) from Soreq Cave within the span

of the figure. Records are organized from west to east.

(EPS)

S5 Fig. Comparison of δ18O and δ13C results from parallel tracks in stalagmite S1.

Figure showing the similar isotopic signal in different but parallel tracks in stalagmite S1 indi-

cating the stability of the signal. Slight offset on x-axis caused by imperfect matching between

the results.

(TIF)

S1 Table. U-Th dating chemistry and results table. Uranium and thorium isotopic composi-

tions and 230Th ages for stalagmite S1 by MC-ICPMS, Thermo Electron Neptune, at HISPEC,

NTU.

(DOCX)

S1 File. Archaeological background to the Palace of Nestor at Pylos and the area around

Pylos.

(DOCX)

S2 File. More detailed information about the setting of the cave where speleothem S1 was

collected.

(DOCX)

S3 File. More detailed information about the material and methods.

(DOCX)

S4 File. More detailed information about the results of the analyses presented in this

paper.

(DOCX)
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S5 File. Extended discussion: Potential impacts of climate variability on Mycenaean soci-

ety.
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S1 Dataset. Stable oxygen and carbon isotope data for stalagmite S1.
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13. Weiberg E, Finné M. Mind or matter? People-environment interactions and the demise of Early Helladic

II society in the northeastern Peloponnese. Am J Archaeol. 2013; 117: 1–31. https://doi.org/10.3764/

aja.117.1.0001

14. Langgut D, Finkelstein I, Litt T. Climate and the Late Bronze Collapse: New Evidence from the Southern

Levant. Tel Aviv. 2013; 40: 149–175. https://doi.org/10.1179/033443513X13753505864205

15. Langgut D, Finkelstein I, Litt T, Harald Neumann F, Stein M. Vegetation and Climate Changes during

the Bronze and Iron Ages (*3600–600 BCE) in the Southern Levant Based on Palynological Records.

Radiocarbon. 2015; 57: 217–235. https://doi.org/10.2458/azu_rc.57.18555

16. Wiener MH. “Minding the Gap”: Gaps, Destructions, and Migrations in the Early Bronze Age Aegean.

Causes and Consequences. Am J Archaeol. 2013; 117: 581–592. https://doi.org/10.3764/aja.117.4.

0581

17. Cline EH. 1177 B.C.: the year civilization collapsed. Princeton: Princeton University Press; 2014.

18. Kaniewski D, Paulissen E, Van Campo E, Weiss H, Otto T, Bretschneider J, et al. Late second–early

first millennium BC abrupt climate changes in coastal Syria and their possible significance for the history

of the Eastern Mediterranean. Quat Res. 2010; 74: 207–215. https://doi.org/10.1016/j.yqres.2010.07.

010

19. Wiener M. The Interaction of Climate Change and Agency in the Collapse of Civilizations ca. 2300–

2000 BC. Radiocarbon. 2014; 56: S1–S16. https://doi.org/10.2458/azu_rc.56.18325

20. Knapp AB, Manning SW. Crisis in Context: The End of the Late Bronze Age in the Eastern Mediterra-

nean. Am J Archaeol. 2016; 120: 99. https://doi.org/10.3764/aja.120.1.0099

21. Middleton GD. Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies. J

Archaeol Res. 2012; 20: 257–307. https://doi.org/10.1007/s10814-011-9054-1

22. Nur A, Cline EH. Poseidon’s Horses: Plate Tectonics and Earthquake Storms in the Late Bronze Age

Aegean and Eastern Mediterranean. J Archaeol Sci. 2000; 27: 43–63. https://doi.org/10.1006/jasc.

1999.0431

23. Nur A, Burgess D. Apocalypse: earthquakes, archaeology, and the wrath of God. Princeton: Princeton

University Press; 2008.

24. Akers PD, Brook GA, Railsback LB, Liang F, Iannone G, Webster JW, et al. An extended and higher-

resolution record of climate and land use from stalagmite MC01 from Macal Chasm, Belize, revealing

connections between major dry events, overall climate variability, and Maya sociopolitical changes.

Palaeogeogr Palaeoclimatol Palaeoecol. 2016; 459: 268–288. https://doi.org/10.1016/j.palaeo.2016.

07.007

25. Hoflmayer F, Manning SW, editors. Comments on Climate, Intra-regional Variations, Chronology, the

2200 B.C. Horizon of Change in the East Mediterranean Region, and Socio-political Change on Crete.

The early/middle bronze age transition in the ancient near east: chronology, c14, and climate change.

Chicago, IL: Oriental Institute of the University of Chicago; 2017. pp. 451–490.

26. Bintliff J. The Complete Archaeology of Greece: From Hunter-Gatherers to the 20th Century A.D.

Chichester, UK: John Wiley & Sons; 2012.

Climate and the fall of the Mycenaean Palace of Nestor at Pylos

PLOS ONE | https://doi.org/10.1371/journal.pone.0189447 December 27, 2017 14 / 18

https://doi.org/10.1073/pnas.1419133112
http://www.ncbi.nlm.nih.gov/pubmed/25902508
https://doi.org/10.1126/science.261.5124.995
https://doi.org/10.1126/science.261.5124.995
http://www.ncbi.nlm.nih.gov/pubmed/17739617
https://doi.org/10.1130/0091-7613(2000)28<379:CCATCO>2.0.CO;2
https://doi.org/10.1371/journal.pone.0071004
http://www.ncbi.nlm.nih.gov/pubmed/23967146
https://doi.org/10.1002/wcc.345
https://doi.org/10.1002/wcc.345
https://doi.org/10.1177/0959683610386819
https://doi.org/10.1016/j.jas.2012.01.029
https://doi.org/10.3764/aja.117.1.0001
https://doi.org/10.3764/aja.117.1.0001
https://doi.org/10.1179/033443513X13753505864205
https://doi.org/10.2458/azu_rc.57.18555
https://doi.org/10.3764/aja.117.4.0581
https://doi.org/10.3764/aja.117.4.0581
https://doi.org/10.1016/j.yqres.2010.07.010
https://doi.org/10.1016/j.yqres.2010.07.010
https://doi.org/10.2458/azu_rc.56.18325
https://doi.org/10.3764/aja.120.1.0099
https://doi.org/10.1007/s10814-011-9054-1
https://doi.org/10.1006/jasc.1999.0431
https://doi.org/10.1006/jasc.1999.0431
https://doi.org/10.1016/j.palaeo.2016.07.007
https://doi.org/10.1016/j.palaeo.2016.07.007
https://doi.org/10.1371/journal.pone.0189447


27. Shelmerdine C. The Palatial Bronze Age of the Southern and central Greek Mainland. Addendum. In:

Cullen T, editor. Aegean prehistory: a review. Boston: Archaeological Institute of America; 2001. pp.

329–381.

28. Harrison AB, Spencer N. After the Palace: The Early “History” of Messenia. In: Davis JL, editor. Sandy

Pylos: An Archaeological History from Nestor to Navarino. 2nd ed. Austin: Texas University Press;

1998. pp. 147–162.

29. Deger-Jalkotzy S. Decline, destruction, and aftermath. In: Shelmerdine CW, editor. The Cambridge

companion to the Aegean Bronze Age. New York: Cambridge University Press; 2008. pp. 387–415.

30. Maran J. The crisis years?: reflections on signs of instability in the last decades of the Mycenaean pal-

aces. Sci DellAntichità. 2009; 15: 241–262.

31. Davis JL. Pylos. In: Cline EH, editor. The Oxford handbook of the Bronze Age Aegean (ca 3000–1000

BC). Oxford: Oxford University Press; 2010. pp. 680–689.

32. Jazwa CS, Jazwa KA. Settlement ecology in Bronze Age Messenia. J Anthropol Archaeol. 2017; 45:

157–169. https://doi.org/10.1016/j.jaa.2016.12.003

33. Maran J. Tiryns. In: Cline EH, editor. The Oxford handbook of the Bronze Age Aegean (ca 3000–1000

BC). Oxford: Oxford University Press; 2010. pp. 722–734.

34. Foxhall L. Bronze to iron: Agricultural systems and political structures in late Bronze Age and early Iron

Age Greece. Annu Br Sch Athens. 1995; 90: 239–250.

35. Shelmerdine CW. THE INDIVIDUAL AND THE STATE IN MYCENAEAN GREECE. Bull Inst Class

Stud. 2011; 54: 19–28. https://doi.org/10.1111/j.2041-5370.2011.00014.x

36. Bennet J. The Aegean Bronze Age. In: Scheidel W, Morris I, Saller RP, editors. The Cambridge eco-

nomic history of the Greco-Roman world. Cambridge, UK; New York: Cambridge University Press;

2007.

37. Killen J. The Linear B tablets and the Mycenaean economy. In: Davies AM, Duhoux Y, editors. Linear B,

a 1984 survey: proceedings of the Mycenaean Colloquium of the VIIIth Congress of the International

Federation of the Societies of Classical Studies (Dublin, 27 August-1st September 1984). Louvain-la-

Neuve: Cabay; 1985. pp. 241–305.

38. Killen J. A view from the Tablets. In: Galaty ML, Parkinson WA, editors. Rethinking Mycenaean palaces

II. Rev. and expanded 2nd ed. Los Angeles: Cotsen Institute of Archaeology, University of California;

2007. pp. 114–117.

39. Halstead P. The economy has a normal surplus: economic stability and social change among early

farming communities of Thessaly, Greece. In: Halstead P, O’Shea, editors. Bad year economics: cul-

tural responses to risk and uncertainty. Cambridge [England]; New York: Cambridge University Press;

1989.

40. Knauss J. Arkadian and Boiotian Orchomenos, centres of Mycenaean hydraulic engineering. Irrig Drain

Syst. 1991; 5: 363–381. https://doi.org/10.1007/BF01102833

41. Halstead P. Toward a model of Mycenaean palatial mobilization. In: Galaty ML, Parkinson WA, editors.

Rethinking Mycenaean palaces II. Rev. and expanded 2nd ed. Los Angeles: Cotsen Institute of

Archaeology, University of California; 2007. pp. 66–73.
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