872 research outputs found

    Seasonal use of a New England estuary by foraging contingents of migratory striped bass

    Get PDF
    Author Posting. © American Fisheries Society, 2009. This article is posted here by permission of American Fisheries Society for personal use, not for redistribution. The definitive version was published in Transactions of the American Fisheries Society 139 (2010): 257-269, doi:10.1577/T08-222.1.Using acoustic telemetry on migratory striped bass Morone saxatilis in Plum Island Estuary (PIE), Massachusetts, we found that striped bass (335–634 mm total length) tagged in the spring and summer of 2005 (n = 14) and 2006 (n = 46) stayed in the estuary for an average of 66.0 d in 2005 and 72.2 d in 2006. Striped bass spent the most time in two specific reaches: middle Plum Island Sound and lower Rowley River. In both years, three different use-groups of striped bass were observed in PIE. Short-term visitors (n = 24) stayed in the estuary only briefly (range = 5–20 d). Two groups of seasonal residents stayed for more than 30 d, either in the Rowley River (n = 14) or in Plum Island Sound (n = 22). Within PIE, the two seasonal-resident use-groups may be foraging contingents that learn how to feed efficiently in specific parts of the estuary. These distinct within-estuary use patterns could have different implications for striped bass condition and prey impact

    Discontinuities Concentrate Mobile Predators: Quantifying Organism-Environment Interactions at a Seascape Scale

    Get PDF
    Understanding environmental drivers of spatial patterns is an enduring ecological problem that is critical for effective biological conservation. Discontinuities (ecologically meaningful habitat breaks), both naturally occurring (e.g., river confluence, forest edge, drop-off) and anthropogenic (e.g., dams, roads), can influence the distribution of highly mobile organisms that have land- or seascape scale ranges. A geomorphic discontinuity framework, expanded to include ecological patterns, provides a way to incorporate important but irregularly distributed physical features into organism–environment relationships. Here, we test if migratory striped bass (Morone saxatilis) are consistently concentrated by spatial discontinuities and why. We quantified the distribution of 50 acoustically tagged striped bass at 40 sites within Plum Island Estuary, Massachusetts during four-monthly surveys relative to four physical discontinuities (sandbar, confluence, channel network, drop-off), one continuous physical feature (depth variation), and a geographic location variable (region). Despite moving throughout the estuary, striped bass were consistently clustered in the middle geographic region at sites with high sandbar area, close to channel networks, adjacent to complex confluences, with intermediate levels of bottom unevenness, and medium sized drop-offs. In addition, the highest striped bass concentrations occurred at sites with the greatest additive physical heterogeneity (i.e., where multiple discontinuities co-occurred). The need to incorporate irregularly distributed features in organism–environment relationships will increase as high-quality telemetry and GIS data accumulate for mobile organisms. The spatially explicit approach we used to address this challenge can aid both researchers who seek to understand the impact of predators on ecosystems and resource managers who require new approaches for biological conservation

    Use of non-natal estuaries by migratory striped bass (Morone saxatilis) in summer

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Fishery Bulletin 107 (2009): 329-338.For most migratory fish, little is known about the location and size of foraging areas or how long individuals remain in foraging areas, even though these attributes may affect their growth, survival, and impact on local prey. We tested whether striped bass (Morone saxatilis Walbaum), found in Massachusetts in summer, were migratory, how long they stayed in non-natal estuaries, whether observed spatial patterns differed from random model predictions, whether fish returned to the same area across multiple years, and whether fishing effort could explain recapture patterns. Anchor tags were attached to striped bass that were caught and released in Massachusetts in 1999 and 2000, and recaptured between 1999 and 2007. In fall, tagged striped bass were caught south of where they were released in summer, confirming that fish were coastal migrants. In the first summer, 77% and 100% of the recaptured fish in the Great Marsh and along the Massachusetts coast, respectively, were caught in the same place where they were released. About two thirds of all fish recaptured near where they were released were caught 2–7 years after tagging. Our study shows that smaller (400–500 mm total length) striped bass migrate hundreds of kilometers along the Atlantic Ocean coast, cease their mobile lifestyle in summer when they use a relatively localized area for foraging (<20 km2), and return to these same foraging areas in subsequent years.This project was administered through the Massachusetts Cooperative Fish and Wildlife Research Unit. The Massachusetts Cooperative Fish and Wildlife Research Unit is an association among the U.S. Geological Survey; University of Massachusetts Department of Natural Resources Conservation; Massachusetts Division of Marine Fisheries; Massachusetts Division of Fisheries and Wildlife, and the Wildlife Management Institute

    The Local Cluster Survey. I. Evidence of Outside-in Quenching in Dense Environments

    Get PDF
    The goal of the Local Cluster Survey is to look for evidence of environmentally driven quenching among star-forming galaxies in nearby galaxy groups and clusters. Quenching is linked with environment and stellar mass, and much of the current observational evidence comes from the integrated properties of galaxies. However, the relative size of the stellar and star-forming disk is sensitive to environmental processing and can help identify the mechanisms that lead to a large fraction of quenched galaxies in dense environments. Toward this end, we measure the size of the star-forming disks for 224 galaxies in nine groups and clusters (0.02 0.1 M⊙ yr^(−1)) using 24 μm imaging from the Spitzer Space Telescope. We normalize the 24 μm effective radius (R_(24)) by the size of the stellar disk (R d ). We find that star-forming galaxies with higher bulge-to-total ratios (B/T) and galaxies in more dense environments have more centrally concentrated star formation. Comparison with H I mass fractions and NUV − r colors indicates that a galaxy's transition from gas-rich and blue to depleted and red is accompanied by an increase in the central concentration of star formation. We build a simple model to constrain the timescale over which the star-forming disks shrink in the cluster environment. Our results are consistent with a long-timescale (>2 Gyr) mechanism that produces outside-in quenching, such as the removal of the extended gas halo or weak stripping of the cold disk gas

    Identification of the variant Ala335Val of MED25 as responsible for CMT2B2: molecular data, functional studies of the SH3 recognition motif and correlation between wild-type MED25 and PMP22 RNA levels in CMT1A animal models

    Get PDF
    Charcot-Marie-Tooth (CMT) disease is a clinically and genetically heterogeneous disorder. All mendelian patterns of inheritance have been described. We identified a homozygous p.A335V mutation in the MED25 gene in an extended Costa Rican family with autosomal recessively inherited Charcot-Marie-Tooth neuropathy linked to the CMT2B2 locus in chromosome 19q13.3. MED25, also known as ARC92 and ACID1, is a subunit of the human activator-recruited cofactor (ARC), a family of large transcriptional coactivator complexes related to the yeast Mediator. MED25 was identified by virtue of functional association with the activator domains of multiple cellular and viral transcriptional activators. Its exact physiological function in transcriptional regulation remains obscure. The CMT2B2-associated missense amino acid substitution p.A335V is located in a proline-rich region with high affinity for SH3 domains of the Abelson type. The mutation causes a decrease in binding specificity leading to the recognition of a broader range of SH3 domain proteins. Furthermore, Med25 is coordinately expressed with Pmp22 gene dosage and expression in transgenic mice and rats. These results suggest a potential role of this protein in the molecular etiology of CMT2B2 and suggest a potential, more general role of MED25 in gene dosage sensitive peripheral neuropathy pathogenesis

    Objective sequence-based subfamily classifications of mouse homeodomains reflect their in vitro DNA-binding preferences

    Get PDF
    Classifying proteins into subgroups with similar molecular function on the basis of sequence is an important step in deriving reliable functional annotations computationally. So far, however, available classification procedures have been evaluated against protein subgroups that are defined by experts using mainly qualitative descriptions of molecular function. Recently, in vitro DNA-binding preferences to all possible 8-nt DNA sequences have been measured for 178 mouse homeodomains using protein-binding microarrays, offering the unprecedented opportunity of evaluating the classification methods against quantitative measures of molecular function. To this end, we automatically derive homeodomain subtypes from the DNA-binding data and independently group the same domains using sequence information alone. We test five sequence-based methods, which use different sequence-similarity measures and algorithms to group sequences. Results show that methods that optimize the classification robustness reflect well the detailed functional specificity revealed by the experimental data. In some of these classifications, 73–83% of the subfamilies exactly correspond to, or are completely contained in, the function-based subtypes. Our findings demonstrate that certain sequence-based classifications are capable of yielding very specific molecular function annotations. The availability of quantitative descriptions of molecular function, such as DNA-binding data, will be a key factor in exploiting this potential in the future.Canadian Institutes of Health Research (MOP#82940)Sickkids FoundationOntario Research FundNational Science Foundation (U.S.)National Human Genome Research Institute (U.S.) (R01 HG003985

    Human native lipoprotein-induced de novo DNA methylation is associated with repression of inflammatory genes in THP-1 macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We previously showed that a VLDL- and LDL-rich mix of human native lipoproteins induces a set of repressive epigenetic marks, <it>i.e. de novo </it>DNA methylation, histone 4 hypoacetylation and histone 4 lysine 20 (H4K20) hypermethylation in THP-1 macrophages. Here, we: 1) ask what gene expression changes accompany these epigenetic responses; 2) test the involvement of candidate factors mediating the latter. We exploited genome expression arrays to identify target genes for lipoprotein-induced silencing, in addition to RNAi and expression studies to test the involvement of candidate mediating factors. The study was conducted in human THP-1 macrophages.</p> <p>Results</p> <p>Native lipoprotein-induced <it>de novo </it>DNA methylation was associated with a general repression of various critical genes for macrophage function, including pro-inflammatory genes. Lipoproteins showed differential effects on epigenetic marks, as <it>de novo </it>DNA methylation was induced by VLDL and to a lesser extent by LDL, but not by HDL, and VLDL induced H4K20 hypermethylation, while HDL caused H4 deacetylation. The analysis of candidate factors mediating VLDL-induced DNA hypermethylation revealed that this response was: 1) surprisingly, mediated exclusively by the canonical maintenance DNA methyltransferase DNMT1, and 2) independent of the Dicer/micro-RNA pathway.</p> <p>Conclusions</p> <p>Our work provides novel insights into epigenetic gene regulation by native lipoproteins. Furthermore, we provide an example of DNMT1 acting as a <it>de novo </it>DNA methyltransferase independently of canonical <it>de novo </it>enzymes, and show proof of principle that <it>de novo </it>DNA methylation can occur independently of a functional Dicer/micro-RNA pathway in mammals.</p
    corecore