27 research outputs found

    Comparative sequence analysis of the potato cyst nematode resistance locus H1 reveals a major lack of co-linearity between three haplotypes in potato (Solanum tuberosum ssp.)

    Get PDF
    The H1 locus confers resistance to the potato cyst nematode Globodera rostochiensis pathotypes 1 and 4. It is positioned at the distal end of chromosome V of the diploid Solanum tuberosum genotype SH83-92-488 (SH) on an introgression segment derived from S. tuberosum ssp. andigena. Markers from a high-resolution genetic map of the H1 locus (Bakker et al. in Theor Appl Genet 109:146–152, 2004) were used to screen a BAC library to construct a physical map covering a 341-kb region of the resistant haplotype coming from SH. For comparison, physical maps were also generated of the two haplotypes from the diploid susceptible genotype RH89-039-16 (S. tuberosum ssp. tuberosum/S. phureja), spanning syntenic regions of 700 and 319 kb. Gene predictions on the genomic segments resulted in the identification of a large cluster consisting of variable numbers of the CC-NB-LRR type of R genes for each haplotype. Furthermore, the regions were interspersed with numerous transposable elements and genes coding for an extensin-like protein and an amino acid transporter. Comparative analysis revealed a major lack of gene order conservation in the sequences of the three closely related haplotypes. Our data provide insight in the evolutionary mechanisms shaping the H1 locus and will facilitate the map-based cloning of the H1 resistance gene

    The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence

    Get PDF
    BACKGROUND: The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. RESULTS: We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. CONCLUSIONS: These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action.SE-vdA is supported by BBSRC grant BB/M014207/1. Sequencing was funded by BBSRC grant BB/F000642/1 to the University of Leeds and grant BB/F00334X/1 to the Wellcome Trust Sanger Institute). DRL was supported by a fellowship from The James Hutton Institute and the School of Biological Sciences, University of Edinburgh. GK was supported by a BBSRC PhD studentship. The James Hutton Institute receives funding from the Scottish Government. JAC and NEH are supported by the Wellcome Trust through its core funding of the Wellcome Trust Sanger Institute (grant 098051). This work was also supported by funding from the Canadian Safety and Security Program, project number CRTI09_462RD

    A high-resolution map of the Grp1 locus on chromosome V of potato harbouring broad-spectrum resistance to the cyst nematode species Globodera pallida and Globodera rostochiensis

    Get PDF
    The Grp1 locus confers broad-spectrum resistance to the potato cyst nematode species Globodera pallida and Globodera rostochiensis and is located in the GP21-GP179 interval on the short arm of chromosome V of potato. A high-resolution map has been developed using the diploid mapping population RHAM026, comprising 1,536 genotypes. The flanking markers GP21 and GP179 have been used to screen the 1,536 genotypes for recombination events. Interval mapping of the resistances to G. pallida Pa2 and G. rostochiensis Ro5 resulted in two nearly identical LOD graphs with the highest LOD score just north of marker TG432. Detailed analysis of the 44 recombinant genotypes showed that G. pallida and G. rostochiensis resistance could not be separated and map to the same location between marker SPUD838 and TG432. It is suggested that the quantitative resistance to both nematode species at the Grp1 locus is mediated by one or more tightly linked R genes that might belong to the NBS-LRR class

    The effector GpRbp-1 of Globodera pallida targets a nuclear HECT E3 ubiquitin ligase to modulate gene expression in the host

    No full text
    Plant-parasitic nematodes secrete effectors that manipulate plant cell morphology and physiology to achieve host invasion and establish permanent feeding sites. Effectors from the highly expanded SPRYSEC (SPRY domain with a signal peptide for secretion) family in potato cyst nematodes have been implicated in activation and suppression of plant immunity, but the mechanisms underlying these activities remain largely unexplored. To study the host mechanisms used by SPRYSEC effectors, we identified plant targets of GpRbp-1 from the potato cyst nematode Globodera pallida. Here, we show that GpRbp-1 interacts in yeast and in planta with a functional potato homologue of the Homology to E6-AP C-Terminus (HECT)-type ubiquitin E3 ligase UPL3, which is located in the nucleus. Potato lines lacking StUPL3 are not available, but the Arabidopsis mutant upl3-5 displaying a reduced UPL3 expression showed a consistently small but not significant decrease in susceptibility to cyst nematodes. We observed a major impact on the root transcriptome by the lower levels of AtUPL3 in the upl3-5 mutant, but surprisingly only in association with infections by cyst nematodes. To our knowledge, this is the first example that a HECT-type ubiquitin E3 ligase is targeted by a pathogen effector and that a member of this class of proteins specifically regulates gene expression under biotic stress conditions. Together, our data suggest that GpRbp-1 targets a specific component of the plant ubiquitination machinery to manipulate the stress response in host cells.</p

    SIZ1 is a nuclear host target of the nematode effector GpRbp1 from Globodera pallida that acts as a negative regulator of basal plant defense to cyst nematodes

    No full text
    Soil-borne cyst nematodes are obligatory sedentary parasites that cause severe losses to cultivation of major crops such as potato and soybean. Cyst nematodes establish specialised permanent feeding sites within the roots of their host by manipulating plant morphology and physiology through secreted effectors. Here we identified host targets of effector GpRbp-1 and studied their roles in plant-nematode interactions. GpRbp-1 was found to interact in yeast and in planta with the potato and Arabidopsis homologues of Siz/PIAS-type E3 SUMO ligase SIZ1. Our results show that a pathogen effector targets the master regulator SIZ1 in plant cells, which has not been demonstrated earlier to our knowledge. The interaction of GpRbp-1 and SIZ1 localizes to the plant nucleus, suggesting that the nuclear functions of SIZ1 as regulator of plant immunity and physiology may be modulated by GpRbp-1. Furthermore, nematode infection assays and transcriptomic profiling indicate that SIZ1 is required for susceptibility to cyst nematodes. So, these data indicate that E3 SUMO ligases may play an important role in plant-nematode interactions. Based on the prediction of SUMO acceptor and interaction sites in GpRbp-1, a model is proposed in which the effector may recruit SIZ1 to be SUMOylated for full functionality in host cells

    Apoplastic Gr-VAP1 suppresses immunity of potato plants to <i>G. rostochiensis</i>.

    No full text
    <p>(A) Transgenic potato plants stably overexpressing Gr-VAP1 in the apoplast show enhanced susceptibility to <i>G. rostochiensis</i>. The number of nematodes per plant was compared at 6 weeks post inoculation for two independent transgenic potato lines harboring either Gr-VAP1 (<i>Gr-VAP1-A</i> and <i>Gr-VAP1-B</i>) or the corresponding T-DNA insert of the empty binary expression vector (<i>EV</i>). The expression constructs included native signal peptide for secretion of Gr-VAP1. Bars represent standard errors of the means. Different letters indicate statistically significant differences between plant genotypes as determined with ANOVA (with <i>P</i>-values <0.05). (B) Apoplastic Gr-VAP1 perturbs the active site of the extracellular defense-related papain-like cysteine protease C14<sup>tub</sup> of potato (<i>S. tuberosum</i>). Image shows binding of the fluorescent activity-based probe DCG-04 to the active site of C14<sup>tub</sup> and C14<sup>lyc</sup> of tomato (<i>S. lycopersicum</i>) following treatment with Gr-VAP1 isolated from apoplastic fluids of agroinfiltrated leaves. Treatments with the Avr2, egg white cystatin, and apoplastic fluids from agroinfiltrations with the empty binary expression vector (Empty vector), and with buffer alone (Buffer) were included as controls.</p
    corecore