129 research outputs found

    Prediction of HLA class II alleles using SNPs in an African population

    Get PDF
    BACKGROUND: Despite the importance of the human leukocyte antigen (HLA) gene locus in research and clinical practice, direct HLA typing is laborious and expensive. Furthermore, the analysis requires specialized software and expertise which are unavailable in most developing country settings. Recently, in silico methods have been developed for predicting HLA alleles using single nucleotide polymorphisms (SNPs). However, the utility of these methods in African populations has not been systematically evaluated. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we investigate prediction of HLA class II (HLA-DRB1 and HLA-DQB1) alleles using SNPs in the Wolaita population, southern Ethiopia. The subjects comprised 297 Ethiopians with genome-wide SNP data, of whom 188 had also been HLA typed and were used for training and testing the model. The 109 subjects with SNP data alone were used for empirical prediction using the multi-allelic gene prediction method. We evaluated accuracy of the prediction, agreement between predicted and HLA typed alleles, and discriminative ability of the prediction probability supplied by the model. We found that the model predicted intermediate (two-digit) resolution for HLA-DRB1 and HLA-DQB1 alleles at accuracy levels of 96% and 87%, respectively. All measures of performance showed high accuracy and reliability for prediction. The distribution of the majority of HLA alleles in the study was similar to that previously reported for the Oromo and Amhara ethnic groups from Ethiopia. CONCLUSIONS/SIGNIFICANCE: We demonstrate that HLA class II alleles can be predicted from SNP genotype data with a high level of accuracy at intermediate (two-digit) resolution in an African population. This finding offers new opportunities for HLA studies of disease epidemiology and population genetics in developing countrie

    LDL-C Concentrations and the 12-SNP LDL-C Score for Polygenic Hypercholesterolaemia in Self-Reported South Asian, Black and Caribbean Participants of the UK Biobank

    Get PDF
    Background: Monogenic familial hypercholesterolaemia (FH) is an autosomal dominant disorder characterised by elevated low-density lipoprotein cholesterol (LDL-C) concentrations due to monogenic mutations in LDLR, APOB, PCSK9, and APOE. Some mutation-negative patients have a polygenic cause for elevated LDL-C due to a burden of common LDL-C-raising alleles, as demonstrated in people of White British (WB) ancestry using a 12-single nucleotide polymorphism (SNP) score. This score has yet to be evaluated in people of South Asian (SA), and Black and Caribbean (BC) ethnicities. Objectives: 1) Compare the LDL-C and 12-SNP score distributions across the three major ethnic groups in the United Kingdom: WB, SA, and BC individuals; 2) compare the association of the 12-SNP score with LDL-C in these groups; 3) evaluate ethnicity-specific and WB 12-SNP score decile cut-off values, applied to SA and BC ethnicities, in predicting LDL-C concentrations and hypercholesterolaemia (LDL-C>4.9 mmol/L). Methods: The United Kingdom Biobank cohort was used to analyse the LDL-C (adjusted for statin use) and 12-SNP score distributions in self-reported WB (n = 353,166), SA (n = 7,016), and BC (n = 7,082) participants. To evaluate WB and ethnicity-specific 12-SNP score deciles, the total dataset was split 50:50 into a training and testing dataset. Regression analyses (logistic and linear) were used to analyse hypercholesterolaemia (LDL-C>4.9 mmol/L) and LDL-C. Findings: The mean (±SD) measured LDL-C differed significantly between the ethnic groups and was highest in WB [3.73 (±0.85) mmol/L], followed by SA [3.57 (±0.86) mmol/L, p < 2.2 × 10−16], and BC [3.42 (±0.90) mmol/L] participants (p < 2.2 × 10−16). There were significant differences in the mean (±SD) 12-SNP score between WB [0.90 (±0.23)] and BC [0.72 (±0.25), p < 2.2 × 10−16], and WB and SA participants [0.86 (±0.19), p < 2.2 × 10−16]. In all three ethnic groups the 12-SNP score was associated with measured LDL-C [R2 (95% CI): WB = 0.067 (0.065–0.069), BC = 0.080 (0.063–0.097), SA = 0.027 (0.016–0.038)]. The odds ratio and the area under the curve for hypercholesterolaemia were not statistically different when applying ethnicity-specific or WB deciles in all ethnic groups. Interpretation: We provide information on the differences in LDL-C and the 12-SNP score distributions in self-reported WB, SA, and BC individuals of the United Kingdom Biobank. We report the association between the 12-SNP score and LDL-C in these ethnic groups. We evaluate the performance of ethnicity-specific and WB 12-SNP score deciles in predicting LDL-C and hypercholesterolaemia

    Lipid lowering and Alzheimer disease risk: A mendelian randomization study.

    Get PDF
    OBJECTIVE: To examine whether genetic variation affecting the expression or function of lipid-lowering drug targets is associated with Alzheimer disease (AD) risk, to evaluate the potential impact of long-term exposure to corresponding therapeutics. METHODS: We conducted Mendelian randomization analyses using variants in genes that encode the protein targets of several approved lipid-lowering drug classes: HMGCR (encoding the target for statins), PCSK9 (encoding the target for PCSK9 inhibitors, eg, evolocumab and alirocumab), NPC1L1 (encoding the target for ezetimibe), and APOB (encoding the target of mipomersen). Variants were weighted by associations with low-density lipoprotein cholesterol (LDL-C) using data from lipid genetics consortia (n up to 295,826). We meta-analyzed Mendelian randomization estimates for regional variants weighted by LDL-C on AD risk from 2 large samples (total n = 24,718 cases, 56,685 controls). RESULTS: Models for HMGCR, APOB, and NPC1L1 did not suggest that the use of related lipid-lowering drug classes would affect AD risk. In contrast, genetically instrumented exposure to PCSK9 inhibitors was predicted to increase AD risk in both of the AD samples (combined odds ratio per standard deviation lower LDL-C inducible by the drug target = 1.45, 95% confidence interval = 1.23-1.69). This risk increase was opposite to, although more modest than, the degree of protection from coronary artery disease predicted by these same methods for PCSK9 inhibition. INTERPRETATION: We did not identify genetic support for the repurposing of statins, ezetimibe, or mipomersen for AD prevention. Notwithstanding caveats to this genetic evidence, pharmacovigilance for AD risk among users of PCSK9 inhibitors may be warranted. ANN NEUROL 2020;87:30-39

    Modelling a two-stage adult population screen for autosomal dominant familial hypercholesterolaemia: cross-sectional analysis within the UK Biobank

    Get PDF
    Background: Most people with autosomal dominant familial hypercholesterolaemia (FH) remain undetected, which represents a missed opportunity for coronary heart disease prevention. Objective: To evaluate the performance of two-stage adult population screening for FH. Design: Using data from UK Biobank, we estimated the screening performance of different low-density lipoprotein cholesterol (LDL-C) cut-offs (stage 1) to select adults for DNA sequencing (stage 2) to identify individuals with FH-causing variants inLDLR, APOB, PCSK9andAPOE. We estimated the number of additional FH cases detected by cascade testing of first-degree relatives of index cases and compared the overall approach with screening in childhood. Setting: UK Biobank. Participants: 140 439 unrelated participants of European ancestry from UK Biobank with information on circulating LDL-C concentration and exome sequence. Main outcome measures: For different LDL-C cut-offs, we estimated the detection and false-positive rate, the proportion of individuals who would be referred for DNA sequencing (stage 1 screen positive rate), and the number of FH cases identified by population screening followed by cascade testing. Results: We identified 488 individuals with an FH-causing variant and 139 951 without (prevalence 1 in 288). An LDL-C cut-off of &gt;4.8 mmol/L had a stage 1 detection rate (sensitivity) of 40% (95% CI 36 to 44%) for a false-positive rate of 10% (95% CI 10 to 11%). Detection rate increased at lower LDL-C cut-offs but at the expense of higher false-positive and screen positive rates, and vice versa. Two-stage screening of 100 000 adults using an LDL-C cut-off of 4.8 mmol/L would generate 10 398 stage 1 screen positives for sequencing, detect 138 FH cases and miss 209. Up to 207 additional cases could be detected throughtwo-generationcascade testing of first-degree relatives. By comparison, based on previously published data, childhood screening followed by cascade testing was estimated to detect nearly three times as many affected individuals for around half the sequencing burden. Conclusions: Two-stage adult population screening for FH could help achieve the 25% FH case detection target set in the National Health Service Long Term Plan, but less efficiently than childhood screening and with a greater sequencing requirement

    Exploring the Role of Plasma Lipids and Statins Interventions on Multiple Sclerosis Risk and Severity: A Mendelian Randomization Study

    Get PDF
    BACKGROUND: There has been considerable interest in statins due to their pleiotropic effects beyond their lipid-lowering properties. Many of these pleiotropic effects are predominantly ascribed to Rho small guanosine triphosphatases (Rho GTPases) proteins. We aimed to genetically investigate the role of lipids and statin interventions on multiple sclerosis (MS) risk and severity. METHOD: We employed two-sample Mendelian randomization (MR) to investigate: (1) the causal role of genetically mimic both cholesterol-dependent (via low-density lipoprotein cholesterol (LDL-C) and cholesterol biosynthesis pathway) and cholesterol-independent (via Rho GTPases) effects of statins on MS risk and MS severity, (2) the causal link between lipids (high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG)) levels and MS risk and severity; and (3) the reverse causation between lipid fractions and MS risk. We used summary statistics from the Global Lipids Genetics Consortium (GLGC), eQTLGen Consortium and the International MS Genetics Consortium (IMSGC) for lipids, expression quantitative trait loci and MS, respectively (GLGC: n = 188,577; eQTLGen: n = 31,684; IMSGC (MS risk): n = 41,505; IMSGC (MS severity): n =7,069). RESULTS: The results of MR using the inverse variance weighted method show that genetically predicted RAC2, a member of cholesterol-independent pathway, (OR 0.86 (95% CI 0.78 to 0.95), p-value 3.80E-03) is implicated causally in reducing MS risk. We found no evidence for the causal role of LDL-C and the member of cholesterol biosynthesis pathway on MS risk. MR results also show that lifelong higher HDL-C (OR 1.14 (95% CI 1.04 to1.26), p-value 7.94E-03) increase MS risk but TG was not. Furthermore, we found no evidence for the causal role of lipids and genetically mimicked statins on MS severity. There is no evidence of reverse causation between MS risk and lipids. CONCLUSION: Evidence from this study suggests that RAC2 is a genetic modifier of MS risk. Since RAC2 has been reported to mediate some of the pleiotropic effects of statins, we suggest that statins may reduce MS risk via a cholesterol-independent pathway (i.e., RAC2-related mechanism(s)). MR analyses also support a causal effect of HDL-C on MS risk

    Performance of polygenic risk scores in screening, prediction, and risk stratification: secondary analysis of data in the Polygenic Score Catalog

    Get PDF
    OBJECTIVE: To clarify the performance of polygenic risk scores in population screening, individual risk prediction, and population risk stratification. DESIGN: Secondary analysis of data in the Polygenic Score Catalog. SETTING: Polygenic Score Catalog, April 2022. Secondary analysis of 3915 performance metric estimates for 926 polygenic risk scores for 310 diseases to generate estimates of performance in population screening, individual risk, and population risk stratification. PARTICIPANTS: Individuals contributing to the published studies in the Polygenic Score Catalog. MAIN OUTCOME MEASURES: Detection rate for a 5% false positive rate (DR5) and the population odds of becoming affected given a positive result; individual odds of becoming affected for a person with a particular polygenic score; and odds of becoming affected for groups of individuals in different portions of a polygenic risk score distribution. Coronary artery disease and breast cancer were used as illustrative examples. RESULTS: For performance in population screening, median DR5 for all polygenic risk scores and all diseases studied was 11% (interquartile range 8-18%). Median DR5 was 12% (9-19%) for polygenic risk scores for coronary artery disease and 10% (9-12%) for breast cancer. The population odds of becoming affected given a positive results were 1:8 for coronary artery disease and 1:21 for breast cancer, with background 10 year odds of 1:19 and 1:41, respectively, which are typical for these diseases at age 50. For individual risk prediction, the corresponding 10 year odds of becoming affected for individuals aged 50 with a polygenic risk score at the 2.5th, 25th, 75th, and 97.5th centiles were 1:54, 1:29, 1:15, and 1:8 for coronary artery disease and 1:91, 1:56, 1:34, and 1:21 for breast cancer. In terms of population risk stratification, at age 50, the risk of coronary artery disease was divided into five groups, with 10 year odds of 1:41 and 1:11 for the lowest and highest quintile groups, respectively. The 10 year odds was 1:7 for the upper 2.5% of the polygenic risk score distribution for coronary artery disease, a group that contributed 7% of cases. The corresponding estimates for breast cancer were 1:72 and 1:26 for the lowest and highest quintile groups, and 1:19 for the upper 2.5% of the distribution, which contributed 6% of cases. CONCLUSION: Polygenic risk scores performed poorly in population screening, individual risk prediction, and population risk stratification. Strong claims about the effect of polygenic risk scores on healthcare seem to be disproportionate to their performance

    Improving the odds of drug development success through human genomics: modelling study.

    Get PDF
    Lack of efficacy in the intended disease indication is the major cause of clinical phase drug development failure. Explanations could include the poor external validity of pre-clinical (cell, tissue, and animal) models of human disease and the high false discovery rate (FDR) in preclinical science. FDR is related to the proportion of true relationships available for discovery (γ), and the type 1 (false-positive) and type 2 (false negative) error rates of the experiments designed to uncover them. We estimated the FDR in preclinical science, its effect on drug development success rates, and improvements expected from use of human genomics rather than preclinical studies as the primary source of evidence for drug target identification. Calculations were based on a sample space defined by all human diseases - the 'disease-ome' - represented as columns; and all protein coding genes - 'the protein-coding genome'- represented as rows, producing a matrix of unique gene- (or protein-) disease pairings. We parameterised the space based on 10,000 diseases, 20,000 protein-coding genes, 100 causal genes per disease and 4000 genes encoding druggable targets, examining the effect of varying the parameters and a range of underlying assumptions, on the inferences drawn. We estimated γ, defined mathematical relationships between preclinical FDR and drug development success rates, and estimated improvements in success rates based on human genomics (rather than orthodox preclinical studies). Around one in every 200 protein-disease pairings was estimated to be causal (γ = 0.005) giving an FDR in preclinical research of 92.6%, which likely makes a major contribution to the reported drug development failure rate of 96%. Observed success rate was only slightly greater than expected for a random pick from the sample space. Values for γ back-calculated from reported preclinical and clinical drug development success rates were also close to the a priori estimates. Substituting genome wide (or druggable genome wide) association studies for preclinical studies as the major information source for drug target identification was estimated to reverse the probability of late stage failure because of the more stringent type 1 error rate employed and the ability to interrogate every potential druggable target in the same experiment. Genetic studies conducted at much larger scale, with greater resolution of disease end-points, e.g. by connecting genomics and electronic health record data within healthcare systems has the potential to produce radical improvement in drug development success rate

    Therapeutic Targets for Heart Failure Identified Using Proteomics and Mendelian Randomization

    Get PDF
    Background: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms are incompletely understood. The discovery of disease-associated proteins with causal genetic evidence provides an opportunity to identify new therapeutic targets. Methods: We investigated the observational and causal associations of 90 cardiovascular proteins, which were measured using affinity-based proteomic assays. First, we estimated the associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-effect meta-analysis of four population-based studies, comprising a total of 3,019 participants with 732 HF events. The causal effects of HF-associated proteins were then investigated by Mendelian randomization (MR), using cis-protein quantitative loci genetic instruments identified from genome-wide association studies (GWAS) in over 30,000 individuals. To improve the precision of causal estimates, we implemented an MR model that accounted for linkage disequilibrium between instruments and tested the robustness of causal estimates through a multiverse sensitivity analysis that included up to 120 combinations of instrument selection parameters and MR models per protein. The druggability of candidate proteins was surveyed, and mechanism of action and potential on-target side effects were explored with cross-trait MR analysis. Results: 44/90 proteins were positively associated with risk of incident HF (P < 6.0 x 10-4). Among these, eight proteins had evidence of a causal association with HF that was robust to multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23) and MMP-12 (Matrix metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently under evaluation in clinical trials, and all the remaining proteins were considered druggable, except KIM-1. Conclusions: We identified 44 circulating proteins that were associated with incident HF, of which eight showed evidence of a causal relationship and seven were druggable, including adrenomedullin which represents a particularly promising drug target. Our approach demonstrates a tractable roadmap for the triangulation of population genomic and proteomic data for the prioritization of therapeutic targets for complex human diseases

    Finding genetically-supported drug targets for Parkinson's disease using Mendelian randomization of the druggable genome

    Get PDF
    There is currently no disease-modifying treatment for Parkinson's disease, a common neurodegenerative disorder. Here, the authors use genetic variation associated with gene and protein expression to find putative drug targets for Parkinson's disease using Mendelian randomization of the druggable genome. Parkinson's disease is a neurodegenerative movement disorder that currently has no disease-modifying treatment, partly owing to inefficiencies in drug target identification and validation. We use Mendelian randomization to investigate over 3,000 genes that encode druggable proteins and predict their efficacy as drug targets for Parkinson's disease. We use expression and protein quantitative trait loci to mimic exposure to medications, and we examine the causal effect on Parkinson's disease risk (in two large cohorts), age at onset and progression. We propose 23 drug-targeting mechanisms for Parkinson's disease, including four possible drug repurposing opportunities and two drugs which may increase Parkinson's disease risk. Of these, we put forward six drug targets with the strongest Mendelian randomization evidence. There is remarkably little overlap between our drug targets to reduce Parkinson's disease risk versus progression, suggesting different molecular mechanisms. Drugs with genetic support are considerably more likely to succeed in clinical trials, and we provide compelling genetic evidence and an analysis pipeline to prioritise Parkinson's disease drug development.Peer reviewe
    • …
    corecore