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Abstract 
 
Background: Heart failure (HF) is a highly prevalent disorder for which disease mechanisms 
are incompletely understood. The discovery of disease-associated proteins with causal 
genetic evidence provides an opportunity to identify new therapeutic targets. 
Methods: We investigated the observational and causal associations of 90 cardiovascular 
proteins, which were measured using affinity-based proteomic assays. First, we estimated the 
associations of 90 cardiovascular proteins with incident heart failure by means of a fixed-
effect meta-analysis of four population-based studies, comprising a total of 3,019 participants 
with 732 HF events. The causal effects of HF-associated proteins were then investigated by 
Mendelian randomization (MR), using cis-protein quantitative loci genetic instruments 
identified from genome-wide association studies (GWAS) in over 30,000 individuals. To 
improve the precision of causal estimates, we implemented an MR model that accounted for 
linkage disequilibrium between instruments and tested the robustness of causal estimates 
through a multiverse sensitivity analysis that included up to 120 combinations of instrument 
selection parameters and MR models per protein. The druggability of candidate proteins was 
surveyed, and mechanism of action and potential on-target side effects were explored with 
cross-trait MR analysis. 
Results: 44/90 proteins were positively associated with risk of incident HF (P < 6.0 x 10-4). 
Among these, eight proteins had evidence of a causal association with HF that was robust to 
multiverse sensitivity analysis: higher CSF-1 (macrophage colony-stimulating factor 1), Gal-
3 (galectin-3) and KIM-1 (kidney injury molecule 1) were positively associated with risk of 
HF, whereas higher ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CTSL1 
(cathepsin L1), FGF-23 (fibroblast growth factor 23) and MMP-12 (Matrix 
metalloproteinase-12) were protective. Therapeutics targeting ADM and Gal-3 are currently 
under evaluation in clinical trials, and all the remaining proteins were considered druggable, 
except KIM-1. 
Conclusions: We identified 44 circulating proteins that were associated with incident HF, of 
which eight showed evidence of a causal relationship and seven were druggable, including 
adrenomedullin which represents a particularly promising drug target. Our approach 
demonstrates a tractable roadmap for the triangulation of population genomic and proteomic 
data for the prioritization of therapeutic targets for complex human diseases. 
 

Keywords: Humans, Genome-Wide Association Study, Macrophage Colony-Stimulating 
Factor, Matrix Metalloproteinase 12, Adrenomedullin, Chitinase-3-Like Protein 1, Fibroblast 
Growth Factor-23, Galectin 3 
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Non-standard Abbreviations and Acronyms 

AF Atrial fibrillation 
BMI Body mass index 
CAD Coronary artery disease 

cis-MR Mendelian randomization using cis- acting protein quantitative trait loci 
instruments 

DBP Diastolic blood pressure 
eGFR Estimated glomerular filtration rate 
GWAS Genome-wide association study 
HF Heart failure 
IQR Inter-quartile range 
IVW Mendelian randomization with inverse-variance weighted estimator 
LD Linkage disequilibrium 
MAF Minor allele frequency 
MR Mendelian randomization 
MR-Egger Mendelian randomization with Egger regression estimator 
NPX Normalized protein expression 
Olink CVD-1 Olink® Cardiovascular I circulating protein biomarker panel 
PEA Proximity extension assay 
pQTL Protein quantitative trait loci 
RR Risk ratio 
SBP Systolic blood pressure 
SD Standard deviation 
SNP Single-nucleotide polymorphism 
T2D Type 2 diabetes 

Cohort and Consortium Acronyms 

Health ABC Health Aging and Body Composition 
HERMES HEart failuRe Molecular Epidemiology for therapeutic targetS consortium 
HOMAGE Heart OMics in AGEing 
PIVUS Prospective Investigation of the Vasculature in Uppsala Seniors 

PREDICTOR Valutazione della PREvalenza di DIsfunzione Cardiaca asinTOmatica e di 
scompenso cardiaco 

PROSPER Prospective Study of Pravastatin in the Elderly at Risk 
SCALLOP Systematic and Combined AnaLysis of Olink Proteins consortium 
ULSAM Uppsala Longitudinal Study of Adult Men 
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Clinical Perspective 
 

What is new? 

● Among 90 proteins investigated for their association with heart failure onset, 44 were 

observationally associated and eight were causally associated, two of which are the 

target of drugs in early clinical trials for heart failure.  

● Targeting adrenomedullin (ADM) was estimated to protect against new onset HF 

consistent with the agonist effect of ADM drug antibodies which are under evaluation 

in clinical trials. 

 

What are the clinical implications? 

● Findings provide confirmatory evidence for the development and evaluation of 

therapeutics targeting galectin-3 and ADM, which are currently being pursued in 

clinical trials for heart failure.  

● Integrating population-scale genomic and proteomic data through triangulation of 

observational and Mendelian randomization analyses facilitates prioritization of drug 

targets and provides insights into molecular mechanisms of a complex clinical 

syndrome. 
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Introduction 

Heart failure (HF) is a clinical syndrome arising from disease processes that either injure or 

overload the heart muscle leading to inadequate function at normal filling pressures1. Despite 

primary prevention through treatment of known antecedent risk factors, prevalence is rising 

and the burden of associated morbidity and mortality remains high2. The challenge of 

recapitulating a complex age-associated disease entity such as heart failure in model systems 

is reflected in a history of late-stage failures of new therapeutics in clinical trials3–5. More 

robust approaches to drug target identification and validation for heart failure are therefore 

required5.  

Proteins are frequently the principal regulators of molecular pathways and the target 

of the vast majority of drugs6. The circulating proteome comprises proteins derived from 

almost all cells and tissues, which are either actively or passively secreted into the circulation 

or released during cell damage or turnover7. Studies of the human circulating proteome 

measured using affinity or aptamer-based multiplexed assays, have identified a large number 

of circulating proteins associated with heart failure onset, progression, and recovery8–10. 

However, the causal relevance of associations from these non-randomized, observational 

studies (referred as observational associations in the present manuscript) remains largely 

undetermined; they may arise due to confounding factors, reverse causation, or inclusion of 

undetected or asymptomatic prevalent cases at time of protein measurement. 

Mendelian randomization (MR) can be used to estimate the causal effect of protein 

levels on disease outcomes11, on condition that three core assumptions are met: that genetic 

instrumental variables are associated with the exposure (relevance assumption); that they are 

not associated with confounding factors (independence assumption); and they affect the 

outcome only through their effects on the exposure of interest (exclusion restriction 

assumption)12,13. In addition to the biological relevance of proteins, the use of genetic variants 
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associated with protein level (protein quantitative trait loci or pQTL) as instrumental 

variables in MR has desirable properties in relation to these assumptions14 (Figure 1, 

Supplemental Table 1). pQTL variants are frequently derived from genome-wide association 

studies (GWAS) using population-based genetic and circulating protein level data15,16, 

fulfilling the relevance assumption by definition. The selection of genetic instruments 

mapping to the vicinity of the transcriptional gene unit (cis- acting variants), as opposed to 

those located more remotely (trans- acting variants) limits the scope for violating the 

exclusion restriction assumption, as pQTL variant effects on the outcome are likely mediated 

through expressions of the protein under consideration (no horizontal pleiotropy)17. Finally, 

based on the central dogma of molecular biology, it is implausible that cis variant instruments 

for protein exposures are conditional on the disease outcome and therefore, it is reasonable to 

assume that protein traits are upstream of the disease outcome in any causal model. 

Throughout the manuscript, we refer to this technique as cis Mendelian randomization (cis-

MR), which has been demonstrated to be able to predict efficacy of known drug targets for 

coronary heart disease14. 

Here, we report an integrated observational and cis-MR analyses of circulating protein 

levels for therapeutic target identification and prioritization in HF, focusing on up to 90 

cardiovascular-disease-related circulating proteins measured with Olink CVD-1 multiplexed 

affinity-based proximity extension assay18 (Figure 1). We perform meta-analysis of 

observational associations between circulating protein levels with incident HF8,9 estimated 

from four independent samples. We estimate the causality of these associations with cis-MR 

analysis, by leveraging summary-level data from large genome-wide association studies 

(GWAS) of circulating levels of proteins under study15 and HF risk19. We identify a number 

of likely causal proteins, report the anticipated effects on HF-related traits estimated through 
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cross-trait cis-MR analysis, and characterize the druggability properties of these proteins as 

potential therapeutic targets for heart failure. 

 

Methods 

Data and Code Availability 

For purposes of reproducing the results or replicating the procedure, the data and analysis 

code used in the main analysis have been made available to other researchers on the 

following online link: https://github.com/alhenry/cvd1-hf. Other supporting data are available 

within the article, supplemental files, and referenced public datasets. 

Circulating Protein Level Measurement 

Circulating protein levels were assessed using Olink Proseek Multiplex proximity extension 

assay (PEA)7,18 technology and were quantified in a NPX (normalized protein expression) 

unit, where 1 unit difference represents a doubling of protein concentration.20 The present 

study focused on cardiovascular-disease related proteins available on the Olink CVD-1 panel, 

for which both observational associations with HF and genetic association estimates for cis-

MR analysis were uniquely available at the time of the study.  Observational association 

estimates with incident HF were available for 90 proteins reported in Ferreira et al. 20199 and 

Stenemo et al. 20188, of which 88 had autosome-wide genetic association results reported in 

Folkersen et al. (2020)15.  In the observational studies, protein measures were taken at 

baseline. A detailed description of the methods used for protein quantification and the 

proteins measured by each of the included studies is provided in Supplemental Note, 

Supplemental Table 2, and Figure 1. 

Study Population for Observational Analysis 

We meta-analyzed observational association estimates between circulating protein level and 

incident HF from four independent samples reported in Ferreira et al. 20199 and Stenemo et 
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al. 20188: HOMAGE (Heart OMics in AGEing)21 discovery, HOMAGE validation, PIVUS 

(Prospective Investigation of the Vasculature in Uppsala Seniors)22, and ULSAM (Uppsala 

Longitudinal Study of Adult Men)23. The HOMAGE discovery and validation samples were 

derived from two population cohorts and one clinical trial population: Health ABC (Health 

Aging and Body Composition)24, PREDICTOR (Valutazione della PREvalenza di 

DIsfunzione Cardiaca asinTOmatica e di scompenso cardiaco)25,26, and PROSPER 

(Prospective Study of Pravastatin in the Elderly at Risk)27–29. Individuals with prevalent HF at 

enrolment were excluded from the analysis. Incident HF was defined as the first diagnosis of 

HF, ascertained on the basis of hospital record review by trained physicians. The combined 

sample comprised 3,019 individuals (median age ranged from 70 to 78 years) among whom 

732 incident HF events were observed during follow-up (median follow-up time ranged from 

1.8 to 10 years). The studies were not able to differentiate between HF with reduced and 

preserved ejection fraction due to a lack of data on left ventricular ejection fraction. 

Characteristics of included studies are provided in Table 1 and Supplemental Note and in 

previous reports8,9. 

Statistical Analysis 

Meta-analysis of Observational Associations 

We performed a fixed-effect meta-analysis using effect estimates from 1) HOMAGE 

discovery, 2) HOMAGE replication, 3) PIVUS, and 4) ULSAM. Effect estimates for 

HOMAGE discovery and HOMAGE replication were extracted from odds ratios calculated 

using multivariable logistic regression adjusting for age, sex, cohort, and follow-up time – 

which were used as matching variables in a matched, nested case-control design9. For PIVUS 

and ULSAM, effect estimates were taken from hazard ratios calculated using Cox 

proportional hazard regression adjusting for age and sex8. Hazard ratios and odds ratios were 

assumed to approximate to an equivalent risk ratio (RR), given that the outcome is rare30. To 
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make results comparable across studies and proteins, study-level circulating protein measures 

in the NPX unit are standardized by setting the mean to zero and standard deviation (SD) to 1 

prior to running regression models, with an assumption that the SDs of circulating protein 

levels are similar across studies. To account for multiple testing, we implemented a 

Bonferroni-corrected allowable type-I error rate (alpha / α) of 0.05 / 90 (number of proteins 

under study). 

Mendelian Randomization Analysis 

We assessed the causality of associations for proteins which survived multiple testing 

correction in the observational analysis by performing two-sample cis-MR using estimates of 

genetic association with circulating protein levels under study and with heart failure. Genetic 

associations with circulating protein levels were extracted from a GWAS meta-analysis of 14 

cohorts comprising 30,931 subjects of European ancestry included in the SCALLOP 

(Systematic and Combined AnaLysis of Olink Proteins) consortium15. Genetic associations 

with heart failure were extracted from a GWAS meta-analysis of 47,309 all-cause HF cases 

from 26 studies of European ancestries included in the HERMES (Heart failuRe Molecular 

Epidemiology for therapeutic targetS) consortium19. Details of participating studies in each 

GWAS meta-analysis are provided in Supplemental Table 3 and Supplemental Table 4. 

Genetic instruments for proteins were selected from all biallelic single-nucleotide 

polymorphism (SNP)s available in both protein and outcome GWAS summary statistics with 

MAF >0.01 and located within 200 kbp upstream or downstream of the cognate protein-

encoding transcription start and stop sites. Given that a gene cis- region constitutes only a 

small proportion of the genome, we relaxed the conventional genome-wide significance P 

value threshold for instrument selection to P < 1 x 10-4.  To allow for an increased statistical 

power to detect an association, we implemented a relaxed LD r2 threshold 0.4 and used MR 

models accounting for residual correlation31. This threshold was based on a simulation study 
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which found that unstable estimates due to multicollinearity started to occur at a threshold 

correlation of around r2 = 0.3632. Using these thresholds, we performed variant clumping 

implemented in PLINK 1.933 to select cis- genetic instruments for each protein, with an LD 

model derived from individual-level HRC-imputed34 genotype data of a random 10,000 UK 

Biobank35 European participants.  

          MR estimates were calculated using the Wald ratio estimator for proteins with a single 

instrument selected, or the inverse-variance weighted (IVW) estimator for proteins with two 

or more instruments. The Wald ratio estimates are calculated as the regression coefficient for 

genetic association with the outcome divided by the regression coefficient for genetic 

association with circulating protein levels. The IVW estimates are calculated as the average 

of instrument ratio coefficients weighted by the inverse-variance. Both estimates from 

observational association and MR analyses approximate a risk ratio of HF per 1 SD increase 

in NPX unit (equivalent to per SD per doubling circulating protein concentration). 

Multiverse Sensitivity Analysis for Mendelian Randomization 

To test the robustness of estimates from the primary MR analysis, proteins with MR 

estimates surviving multiple testing correction (P value < 0.05 / numbers of observationally 

associated proteins with at least 1 instrument) were taken forward to undergo an in-depth, 

multiverse sensitivity analysis36 in which the stability of the effect estimates was evaluated 

under a wide combinations of instrument selection parameters and MR models. Thresholds 

for instrument selection (P value and r2) and alternative MR models were prioritized over 

other possible parameters, such as LD reference population and genomic distance, since these 

parameters were observed to have the greatest influence on estimate stability in a previous 

systematic evaluation of methods for drug target Mendelian randomization14. For each MR 

model, we computed causal estimates for all possible combinations of five LD r2 thresholds 

(0.05, 0.1, 0.2, 0.4, and 0.6) and six P-value thresholds (5 x 10-8, 1 x 10-5, 1 x 10-4, 1 x 10-3, 1 

 

D
ow

nloaded from
 http://ahajournals.org by on M

arch 22, 2022



10.1161/CIRCULATIONAHA.121.056663 

11 

x 10-2, and 1 / no threshold). These combinations included the parameters used in the primary 

MR analysis above and stringent parameters commonly used in conventional MR analysis of 

complex trait exposures37. For proteins with a single cis instrument, the Wald ratio was the 

only model that could be tested; where two or more instruments were available, estimates 

were calculated with: the IVW estimator and MR models using principal components32 with 

90% variance and 99% variance explained; and where there were three or more instruments 

we additionally calculated estimates using MR-Egger12  (Supplemental Figure 1). MR with 

principal components is an alternative model to account for correlation between 

instruments32, and MR-Egger provides estimates accounting for residual horizontal 

pleiotropy12. To reduce spurious associations that may arise due to excess multicollinearity or 

bias towards the null due to weak instruments in two-sample MR14, outlier point estimates 

with value outside 1.5 times the interquartile range (IQR) above the upper quartile and below 

the lower quartile were removed. An association was declared as robust if all point estimates 

from the multiverse sensitivity analysis were directionally concordant with estimates from the 

primary MR analysis, including those based on strict instrument selection parameters and a 

standard IVW model. 

The IVW and MR-Egger estimates were calculated using the 

MendelianRandomization package in R38, with a fixed-effect model for 3 or fewer genetic 

instruments, or a multiplicative random-effects model otherwise.  To minimize erroneously 

low P value due to multicollinearity issue, correlation between instruments was accounted for 

by incorporating the instrument pairwise LD correlation matrix in the IVW and MR-Egger 

models14,31.   The MR method with principal components was implemented using sample 

codes from the original publication.32 Genomic coordinates for all relevant analyses were 

based on Ensembl GRCh37 reference39. 

Cross-trait Mendelian Randomization Analysis 
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To investigate the potential mechanisms through which candidate target proteins may 

influence HF risk, we performed an exploratory cross-trait MR to estimate the causal 

association of genetically-predicted circulating protein levels with common risk factors and 

comorbidities of HF: coronary artery disease (CAD), atrial fibrillation (AF), estimated 

glomerular filtration rate (eGFR), systolic blood pressure (SBP), diastolic blood pressure 

(DBP), type 2 diabetes (T2D), and body mass index (BMI). MR analysis was performed with 

the primary instrument selection strategy and MR model described above using publicly 

available GWAS statistics for the relevant traits (Supplemental Table 5)40–45. To allow 

comparison across protein-trait pairs, effect estimates were converted to Z scores, calculated 

as log odd ratios divided by their standard errors. The protein-trait MR association was 

considered potentially causal if the P value from the MR analysis was less than a 

conservative Bonferroni adjusted threshold of 0.05 divided by the number of protein-trait 

pairs.   

Evaluation of Druggability and Clinical Development Activity  

We extracted the druggability profile of candidate target proteins from an updated list of 

druggable genes6. To evaluate clinical development activity of candidate drugs targeting the 

candidate proteins, we queried ChEMBL46 (release 27) database to get information on drug 

molecule types, approved indications, and target outcomes in clinical trials. We 

complemented this query by performing a manual search through ClinicalTrials.gov website 

for each candidate target. 

Ethical Statement 

All included studies were ethically approved by local institutional review boards and all 

participants provided written informed consent. The analysis was conducted in accordance 

with guidelines for study procedures provided by the UCL Research Ethics Committee. 
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Results 

Meta-Analysis of Observational Studies Reveals 44 Circulating Proteins Associated with 

Incident Heart Failure 

Through a meta-analysis of observational associations from 4 independent samples, 

comprising up to 732 incident HF events in  3,019 subjects, we found 44 out of the 90 

proteins were associated with incident HF after multiple testing adjustment at P < 6.0 x 10-4 

(α = 0.05/90 proteins), including 22 associations that were not reported in the individual 

participating studies8,9. Increasing circulating levels of all the 44 observationally associated 

proteins showed a risk-increasing effect on incident HF, with a median RR of 1.33 (IQR = 

1.26 to 1.46). The largest effect sizes were observed in BNP (RR = 1.92; 95% confidence 

interval [CI] = 1.70 to 2.18) and NT-proBNP (RR = 1.85; 95% CI = 1.63 to 2.10), two 

biomarkers which have been routinely used in clinic to diagnose HF. We found no evidence 

of heterogeneity of the effect estimates after adjustment for multiple testing (PHET < 0.05/44). 

Full study-level and meta-analysis estimates are provided in Supplemental Table 6. 

Causal Effect Estimation with cis- Mendelian Randomization 

Of the 90 proteins under study, cis region genetic association summary statistics were 

available for 83 proteins encoded by autosomal genes (Supplemental Table 2). Cis region 

sizes varied according to gene length from 401 to 705 kilobase pairs and contained a mean of 

1181 variants (standard deviation / SD = 498). Using the primary instrument selection 

parameter with LD r2 threshold of 0.4 and P value threshold of 10-4, we identified 75 proteins 

with 1 to 125 (median = 23) cis- genetic instrument, including 40 out of the 44 

observationally associated proteins. For comparison, conventional instrument selection 

parameters (LD r2 < 0.05, P < 5 x 10-8) identified 70 proteins with 1 to 28 (median = 5) cis- 

genetic instruments. Instrument-specific estimates are provided in the accompanying data and 

code (https://github.com/alhenry/cvd1-hf/tree/main/resources). 
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The primary MR analysis suggested causal relationships for 17 out of the 40 (43%) 

observationally associated proteins (P < 0.05/40). The direction of effects for 16/17 proteins 

were consistent with those calculated using conventional MR parameters; however, only 

CHI3L1 survived the multiple testing correction (Figure 2). We also investigated the 

remaining 35 proteins that did not have an observational association with HF and with at least 

one cis- genetic instrument. Of these, we found additional 9 proteins (26%) with evidence 

suggestive of a causal association with HF in MR (P < 0.05 / 35). Full MR results are 

provided in Supplemental Table 7. 

Multiverse Sensitivity Analysis Demonstrates Robust Causal Estimates for Eight HF-

Associated Proteins  

Noting that MR estimates are highly sensitive to choice of parameters for instrument and 

model selection17,47, we tested the stability of the association estimates for each of the 17 HF-

associated proteins for which the primary MR analysis suggested underlying causal effects, 

using a multiverse sensitivity analysis. We tested up to 120 combinations of commonly used 

parameters for instrument selection and MR models per protein, focusing on parameters 

which explain the largest variability in MR estimates based on prior simulation and empirical 

studies14,32, resulting in a total of 1850 individual effect estimates (Supplemental Data 3). We 

evaluated the distribution of the point estimates generated and compared these with the 

primary cis-MR analysis estimates and with estimates from conventional instrument selection 

parameters (Figure 2b, Supplemental Table 8). For all 17 proteins under analysis, estimates 

from the primary cis-MR analysis were directionally concordant with median values of the 

multiverse analysis point estimate distributions and showed overlapping 95% confidence 

intervals with estimates from cis-MR using conventional strict instrument selection 

parameters. 
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Further, we identified robust evidence of a causal association with HF as indicated by 

sign concordance of all MR point estimates from the multiverse sensitivity analysis for eight 

proteins: ADM (adrenomedullin), CHI3L1 (chitinase-3-like protein 1), CSF-1 (macrophage 

colony-stimulating factor 1), CTSL1 (cathepsin L1), FGF-23 (fibroblast growth factor 23), 

Gal-3 (galectin-3), MMP-12 (Matrix metalloproteinase-12), and KIM-1 (kidney injury 

molecule 1). Increasing circulating levels of all eight proteins were positively associated with 

risk of incident heart failure in the observational analysis. In the MR analysis, however, only 

three proteins (CSF-1, Gal-3, and KIM-1) showed positive associations with risk of HF, 

whereas the remaining five (ADM, CHI3L1, CTSL1, FGF-23, and MMP-12) showed 

negative associations, suggesting causal protective effects (Figure 3).  

Cross-Trait Mendelian Randomization Analysis for Candidate Therapeutic Targets for 

Heart Failure  

We took forward the eight proteins robustly associated with HF and explored their causal 

effects on seven HF related traits (CAD, AF, eGFR, SBP, DBP, T2D, and BMI), using the 

primary cis- MR analysis method (Figure 3). Of the eight candidate proteins, one (ADM) was 

not associated with any trait other than HF, whereas the remaining seven were associated 

with at least one other trait after multiple testing correction (P < 0.05 / 8 proteins / 7 traits 

excluding HF). Consistent with evidence from overexpression perturbation studies in animal 

models, Gal-348 and CSF-149 were positively associated with BMI, a biomarker of adiposity 

and a known risk factor for HF50. CHI3L1 and CTSL1 were protective for CAD, consistent 

with reports of cardioprotective effects in animal models of cardiac ischemia51,52. A higher 

circulating CSF-1 level was associated with an increased risk of CAD53, whereas MMP-12 

showed a protective effect, consistent with previous reports16. A higher level of FGF-23 was 

associated with a lower estimated glomerular filtration rate (eGFR), consistent with findings 
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from pre-clinical models where FGF-23 deficiency was associated with worsening renal 

failure and cardiac hypertrophy54.  

Appraisal of Druggability and Existing Approved or Clinical-Phase Drug Candidates 

for Candidate Protein Targets 

To evaluate the druggability and drug development activities of candidate targets, we 

searched through a list of druggable genes6, the ChEMBL (release 27) drug discovery 

database, and a clinical trial registry (https://clinicaltrials.gov, accessed on 1 December 

2020). We grouped candidate targets into three categories corresponding to the highest status 

in the drug development pipeline: approved (targeted by drugs already approved for one or 

more conditions), in development (currently being investigated in clinical trials), and 

druggable (listed as druggable targets) (Table 2). A candidate drug targeting adrenomedullin, 

adrecizumab (a humanized, monoclonal, non‐neutralizing antibody against the N‐terminus of 

ADM55) is entering phase II trials for septic shock (ClinicalTrials.gov identifier: 

NCT03085758), cardiogenic shock (NCT03989531) and acute heart failure (NCT04252937). 

A modified citrus pectin (MCP) Gal-3 inhibitor has been evaluated for effects markers of 

collagen metabolism in patients with hypertension in a proof-of-concept clinical trial for 

cardiac fibrosis56. CSF-1 and MMP-12 inhibitors are currently being evaluated in clinical 

trials for non-HF conditions. Burosumab, a monoclonal antibody FGF-23 inhibitor, has 

already been approved for treating X-linked hypophosphatemia and hypophosphatemic 

rickets. Although we found no ongoing trials specific for CHI3L1 or CTSL1, inhibition of 

CTSL1 is proposed as potential treatment for SARS-CoV-2 infection and several approved 

agents show inhibitory activity against CTSL157. With the exception of KIM-1, all seven 

other proteins are predicted to be secreted in at least one tissue according to the Human 

Protein Atlas database 58. KIM-1 is also not currently listed as a potential drug target 

according to the druggable gene list, ChEMBL release 27, and ClinicalTrials.gov databases. 
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Discussion 

Principal Findings 

We investigated 90 circulating proteins for their association with incident heart failure in a 

population of 3,019 individuals with 732 events. 44 proteins had positive associations with 

risk of incident heart failure, 22 of which were not reported in the participating studies. These 

included associations with incident HF reported elsewhere such as Gal-3, HGF and Resistin 

59–61, proteins such as CXCL16 with reported associations with prognosis in HF62, and with 

cardiac fibrosis on cardiac magnetic resonance imaging in HF including MMP3 63. Among 

the novel associations to highlight, CTSL1, is a potent endoprotease linked to the 

development of dilated cardiomyopathy and heart failure in mice models 64,65. We used cis- 

MR to estimate whether the observational protein-HF associations reflected an underlying 

causal relationship. Of the 40 proteins for which cis genetic instruments were available, 17 

showed evidence suggestive of causal effects of which eight were robust to multiverse 

sensitivity analysis. Among these eight HF-associated proteins, three were positively 

associated with risk of HF (CSF-1, Gal-3, and KIM-1) and five were negatively associated, 

consistent with causally protective effects (ADM, CHI3L1, CTSL1, FGF-23, and MMP-12). 

Seven are known or predicted to be druggable by conventional therapeutic modalities, and 

therapeutic agents targeting two of the identified proteins are currently under evaluation in 

phase II clinical trials: Adrecizumab, an ADM agonist, for acute HF and cardiogenic shock55, 

and modified citrus pectin, a Gal-3 antagonist, for cardiac fibrosis 56. We note that CTSL1 

inhibition has been proposed as a potential treatment for COVID-19 66; our results signal HF 

as a potential safety liability of this therapeutic approach. Our findings provide evidence 

supporting the therapeutic hypotheses underpinning two drug development programs for HF 

and more broadly highlight the emerging opportunities to explore human causal biology of 

complex disease using population-scale genomic and proteomic data. 
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 Concordance of Observational and Causal Associations for Identified Proteins 

One of the key strengths of study is the triangulation of evidence between observational and 

MR analyses for a consistently measured set of cardiovascular proteins. For all the protein-

HF associations that were identified in our meta-analysis, there was a positive association, i.e. 

a higher protein concentration was associated with an increased risk of incident HF. This is 

consistent with previously reported biomarker association studies with incident HF, for 

example, a study of incident HF in the Framingham population identified 18 associated 

circulating biomarkers of which 17 were positive associations 67. When we estimated the 

causal association of the observationally associated HF proteins; however, we found that the 

observational and causal association estimates were frequently discordant with opposing 

direction of effects. For example, five proteins with an estimated causally protective effect 

were found to have a positive association with incident HF, including MMP-12 and ADM. In 

the case of MMP-12, our findings are consistent with prior reports on the associations 

between MMP-12 and CAD68,16. These discordant findings may be explained by subclinical 

or pre-disease leading to higher levels of these proteins that precedes the clinical diagnosis of 

HF, potentially as an adaptive feedback response to mitigate the disease process. The median 

baseline age in the included studies ranged from 70-78 years and it is likely that subclinical 

alterations in cardiac structure and function occurred before incident HF, which was defined 

as the first HF hospitalization. Concordant observational and causal associations (CSF-1, 

Gal-3, KIM-1) may be explained either by upstream processes driving risk or by reverse 

causation where a positive feedback loop exists between the HF and expression of the 

protein. For several proteins, including established clinical biomarkers NT-pro-BNP and ST2, 

we found positive observational associations but were unable to detect causal effects by MR 

analysis. In these the observational associations may be interpreted as non-causal, arising 
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from reverse causation. We cannot, however, exclude a type 2 error due to imprecision of the 

MR estimates. 

Comparison with Other Studies 

To our knowledge, our study represents the first large-scale analysis of incident HF that 

combines observational associations of circulating proteins with a systematic appraisal of 

causal effects using MR. Our results were consistent with previously reported findings from 

MR studies of NT-pro-BNP and GDF-15, which did not report evidence of a strong causal 

relationship between these proteins and risk of HF69,70. Our approach of triangulating 

evidence from observational association and MR represents a pragmatic approach to screen 

and prioritize targets for therapeutic development, according to the relative strength of 

evidence from analysis of the data available71. In our study, we used a method for cis-MR 

that incorporates the LD correlation structure within the causal model and provides estimates 

with higher precision31. We combined this primary approach with a new technique to 

evaluate the robustness of the identified protein-HF associations that involved systematically 

testing multiple combinations of model parameter selection in a multiverse sensitivity 

analysis, enabling us to deprioritize proteins with unstable estimates. Using this framework, 

we found evidence supporting a causal relationship for eight of the 40 HF-associated proteins 

tested; compared with a single association for CHI3L1 that was identified using conventional 

approaches. For example, the estimates for CTSL1 and FGF-23 generated with this approach 

more clearly suggest a causal effect compared with those based on more stringent instrument 

selection (Figure 2b, Supplemental Table 7).  

Implications for Therapeutics Targeting Heart Failure  

All eight proteins with estimated causal effects, except ADM, were associated with HF-

related traits in an exploratory cis-MR cross-trait analysis, including upstream HF risk 

factors. Distinct pathobiological pathways and proteomic signatures are described for 
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subgroups of patients with HF, such as those defined by left ventricular ejection fraction72; 

however, we were unable to perform a stratified analysis due to the limited phenotype data 

available at the time of HF diagnosis. To leverage the full potential of proteomics and 

genomics in understanding heart failure and identifying drug targets, there is a need to 

decompose heart failure into phenotypic components including those of cardiac dysfunction 

and fluid congestion which characterize this condition. ADM and CTSL1 are notable among 

our findings since their protective effect against the risk of heart failure was not explained by 

association with upstream risk factor traits. ADM is a circulating peptide hormone 

synthesized by endothelial and vascular smooth muscle cells, the biologically active form of 

which has been proposed as a marker and inhibitor of tissue fluid congestion, a hallmark 

feature of heart failure55. Consistent with our results, it has been hypothesized that ADM may 

play a protective role in HF development and progression by maintaining vascular integrity, 

inducing vasodilatation, and inhibiting renin–angiotensin–aldosterone system55.   

Limitations  

Whilst the clinical ascertainment of heart failure was consistent across the studies included in 

the observational analysis and in HF GWAS, the interpretation of our findings is limited by 

the lack of detailed phenotyping by etiology and phenotypes of cardiac structure and 

function. Our MR framework, including the prioritization of parameters for the multiverse 

analysis, was based upon prior studies of gene transcript exposure demonstrating robust and 

reproducible estimates73; however, the scope of our multiverse analysis was limited by the 

high computational burden of the approach. There is a lack of consensus regarding the 

optimal approach to cis-MR and we were unable to empirically replicate our findings in an 

independent sample because none were available at the time of the study. It is possible for 

proteins with an important causal contribution to HF risk to have a null observational 

association in this study due to negative confounding or imprecision of the estimates. Given 
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that circulating protein concentrations are measured in a relative normalized protein 

expression unit20, the derived effect estimates are rarely representative of the absolute 

magnitude of effect on HF and are not directly comparable across proteins. The expected 

causal direction of effects, however, can inform potential efficacy and on-target side effects, 

which can be formally investigated further in clinical trials. Further studies are needed to 

corroborate and extend our findings, to include a larger number of protein biomarkers and to 

explore the relationship of the identified proteins with disease subtypes. These studies will be 

enabled by the rapidly increasing availability of proteomic and genomic information at 

population scale from large healthcare-linked biobanks.  

 

Conclusion  

In conclusion, we evaluated 90 cardiovascular-related proteins through observational and 

Mendelian randomization analysis using population-based proteomic data and identified 7 

candidate drug targets for heart failure. Of these, two proteins (ADM and Gal-3) are currently 

under evaluation in clinical trials for HF and five (CHI3L1, CSF-1, CTSL1, FGF-23 and 

MMP-12) represent novel putative therapeutic targets for HF. This study provides an 

example of the opportunities for human target prioritization that are enabled by emerging 

population-based genomic and proteomic data resources. Proteome-wide studies 

incorporating both direct association with target outcomes and genetic-based inference 

through Mendelian randomization are likely to provide important new tools for therapeutic 

target discovery and prioritization
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Table 1. Summary of Study Characteristics Included in the Observational Meta-
Analysis 

Reporting 
Study Study design Cohort 

Median age at 
baseline 
(years) 

Median Follow-
Up (years) [range] 

HF events / N 
total sample 

Ferreira et 
al. (2019) 

Nested-matched 
case-control 
(logistic 
regression) 

HOMAGE21 discovery 

Health ABC24 74 8.3 [0.0–14.4] 215 / 648 

PREDICTOR25,26 77 2.5 [0.2-3.8] 15 / 44 

PROSPER27–29 77 2.0 [0.2-3.9] 56 / 185 

HOMAGE21 validation 

Health ABC24 73 9.0 [0.1-14.4] 109 / 208 

PREDICTOR25,26 76 2.2 [0.1-4.5] 29 / 58 

PROSPER27–29 76 1.8 [0.1-3.8] 138 / 290 

Stenemo et 
al. (2018) 

Time-to-event 
analysis (Cox 
proportional 
hazards regression) 

PIVUS22 70.2 10.0 [0.1-10.9] 80 / 901 

ULSAM23 77.8 8.0 [0.2-10.9] 90 / 685 
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Table 2. Summary of Druggability and Clinical Development Activity for HF-
Associated with Causal Associations on Mendelian Randomisation Analysis 

Target Status Compound name Molecule type Action type Clinical development 
activities 

ADM 
(adrenomedullin) in development adrecizumab† antibody 

redistributing 
interstitial to 
plasma ADM 

Phase I/II trials: Septic 
shock (NCT03085758)†, 
Cardiogenic shock 
(NCT03989531)†, Acute 
heart failure 
(NCT04252937)† 

CHI3L1 
(chitinase 3-like 
1) 

druggable* – antibody* – – 

CSF-1 (colony 
stimulating 
factor 1) 

 
in development 
 

MCS-110‡ 
(CHEMBL2109512) antibody antagonist 

Phase I/II trials: 
Melanoma, Stomach 
Neoplasms, Breast 
Neoplasms  

PD-360324‡ 
(CHEMBL2109513) antibody antagonist 

Phase I/II trials: Arthritis, 
Rheumatoid, Lupus 
Erythematosus, Cutaneus 
Sarcoidosis 

CTSL1 
(cathepsin L) druggable* – small molecule* – – 

FGF-23 
(fibroblast 
growth factor 23) 

approved burosumab‡ 
(CHEMBL3707326) antibody antagonist 

Approved for: X-linked 
Hypophosphatemia, 
Hypophosphatemic 
Rickets 

Gal-3 (galectin-
3) 

in development GB1211† small molecule* antagonist 
Phase I/II trials: Non-
alcoholic steatohepatitis 
(NCT04607655)† 

in development Modified Citrus 
Pectin (MCP) 

carbohydrate 
oral supplement antagonist 

Phase I/II trials: 
Hypertension 
(NCT01960946)† 

 
MMP-12 (matrix 
metallopeptidase 
12) 

 
in development 

FP-025† small molecule antagonist Phase I/II trials: Asthma 
(NCT03858686)† 

MARIMASTAT‡ 
(CHEMBL279785) small molecule antagonist 

Phase III trials‡: Lung 
Neoplasms, Breast 
Neoplasms 

KIM-1 (kidney 
injury molecule 
1) 

Not currently 
listed as 
druggable 

– – – – 

*data from druggable gene list6 

†data from ClinicalTrials.gov (clinical trial ID in brackets) 
‡data from ChEMBL release 2746 (compound ID in brackets) 
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Figure Legends 

  

Figure 1. A Flowchart of the Study Design and a Schematic Illustration of cis-

Mendelian Randomization. MR, Mendelian randomization; LD, linkage disequilibrium; 

GWAS, genome-wide association study; pQTL, protein quantitative trait loci 

 

Figure 2. Observational and Mendelian Randomization Estimates of Protein - Heart 

Failure Association. a. Circular heatmap of association from 40 proteins associated with 

incident heart failure in observational studies (P < 0.05/83 = 0.0006). The two circular lanes 

refer to results from two analyses: 1) observational analysis; and 2) cis- Mendelian 

randomization with partially correlated instruments. Color represents direction of effect and 

strength of association with heart failure measured by P-value. b. Forest plot of risk ratio 

(hazard ratio from observational analysis and odds ratio from MR analysis) from 17 proteins 

associated with heart failure in MR analysis (P < 0.05/40 = 0.001). Colored dots and error 

bars indicate the point estimate and 95% confidence intervals. The grey violin plots around 

the MR estimates illustrate the distributions of odds ratio point estimates estimated from 

combinations of up to 30 instrument selection parameters and 4 MR models in multiverse 

sensitivity analysis, with medians of distribution shown as vertical lines within the violin 

plot. Proteins with consistent direction of effect as indicated by multiverse sensitivity analysis 

are highlighted in bold and italic font. 

 

Figure 3. Estimated Effect of Prioritized Circulating Protein Levels with Heart Failure 

and Related Traits. Left panel shows approximate relative risks of heart failure per doubling 

circulating protein levels as estimated with meta-analysis of observational data and cis-MR. 

Right panel shows a matrix of estimated causal effect size of prioritized circulating protein 

levels (rows) on HF and related traits (columns) from cis-MR analysis as represented by 
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bullet points. The size of the bullet represents the magnitude of estimated causal effect 

measured in absolute Z-score. Bullet points with a darker shade indicate associations that 

survived multiple testing at P-value < 0.0009 (α = 0.05 / (8 proteins * 7 traits, excluding 

HF)). Red color indicates a risk / trait -increasing effect and blue color indicates a risk / trait -

decreasing effect. Abbreviations: MR, Mendelian randomization; CI, confidence interval; 

CAD, coronary artery disease; AF, atrial fibrillation; eGFR, estimated glomerular filtration 

rate; SBP, systolic blood pressure; DBP, diastolic blood pressure; T2D, type 2 diabetes; BMI, 

body mass index. 
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