73 research outputs found

    Generating conjecture and Einstein-Maxwell field of plane symmetry

    Get PDF
    For the plane symmetry we have found the electro-vacuum exact solutions of the Einstein-Maxwell equations and we have shown that one of them is equivalent to the McVittie solution of a charged infinite thin plane. The analytical extension has been accomplished and the Penrose conformal diagram has been obtained as well.Comment: 11 pages, 6 figure

    Effect of collision cascades on dislocations in tungsten: A molecular dynamics study

    Get PDF
    Tungsten (W) is the prime candidate material for the divertor and other plasma-facing components in DEMO. The point defects (i.e. vacancies and self-interstitials) produced in collision cascades caused by incident neutrons aggregate into dislocation loops (and voids), which strongly affect the mechanical properties. The point defects also interact with existing microstructural features, and understanding these processes is crucial for modelling the long term microstructural evolution of the material under fusion conditions. In this work, we performed molecular dynamics simulations of cascades interacting with initially straight edge dislocation dipoles. It was found that the residual vacancy number usually exceeds the residual interstitial number for cascades interacting with vacancy type dipoles, but for interstitial type dipoles these are close. We observed that a cascade near a dislocation promotes climb, i.e. it facilitates the movement of point defects along the climb direction. We also observed that the dislocations move easily along the glide direction, and that kinks are formed near the centre of the cascade, which then facilitate the movement of the dipoles. Some dipoles are sheared off by the cascade, and this is dependent on PKA energy, position, direction, and the width of dipole

    Modeling Microstructure and Irradiation Effects

    Full text link

    Atomistic simulations of nanometric dislocation loops in bcc tungsten

    No full text
    Small dislocation loops formed from self-interstitial atoms (SIAs) are commonly found in irradiated metals. These defects significantly influence the mechanical properties of the materials. Atomistic simulations are used to describe nanometric circular dislocation loops with Burger’s vectors 1/2a0, a0, and a0 in bcc tungsten. Particular attention is paid to the habit plane of the 1/2a0loop. Two different embedded atom model (EAM) potentials are used. The energetics and geometry of the loops are studied as a function of their size

    Molecular dynamics simulation of radiation damage in bcc tungsten

    No full text
    Molecular dynamics simulations of collision cascades in pure tungsten are performed to assess the primary damage due to irradiation. For short-range interaction the universal potential is used [J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Solids, Pergamon Press, 1985, p. 41], while for long-range interaction, three different embedded atom method potentials [M.W. Finnis, J.E. Sinclair, Phil. Mag. A 50 (1984) 45; GJ. Ackland, R. Thetford, Phil. Mag. A 56 (1987) 15; P.M. Derlet, D. Nguyen-Manh, S.L. Duclarev, Phys. Rev. B 76 (2007) 054107] are used, namely, Finnis-Sinclair, Ackland -Thetford and Deriet-Nguyen-Manh-Dudarev, the latter providing a more accurate formation energy for the (110) interstitial. The short-range and long-range potentials are smoothly connected. A new approach improving the reliability of such potential fits at short distances is presented. These potentials are then evaluated on the basis of displacement threshold, point defect formation and migration energies, thermal expansion and temperature of melting. Differences in the damage resulting from collision cascades are discussed, (C) 2008 Elsevier B.V. All rights reserved
    corecore