106 research outputs found
Body-axis organization in tetrapods: a model-system to disentangle the developmental origins of convergent evolution in deep time
Convergent evolution is a central concept in evolutionary theory but the underlying mechanism has been largely debated since On the Origin of Species. Previous hypotheses predict that developmental constraints make some morphologies more likely to arise than others and natural selection discards those of the lowest fitness. However, the quantification of the role and strength of natural selection and developmental constraint in shaping convergent phenotypes on macroevolutionary timescales is challenging because the information regarding performance and development is not directly available. Accordingly, current knowledge of how embryonic development and natural selection drive phenotypic evolution in vertebrates has been extended from studies performed at short temporal scales. We propose here the organization of the tetrapod body-axis as a model system to investigate the developmental origins of convergent evolution over hundreds of millions of years. The quantification of the primary developmental mechanisms driving body-axis organization (i.e. somitogenesis, homeotic effects and differential growth) can be inferred from vertebral counts, and recent techniques of three-dimensional computational biomechanics have the necessary potential to reveal organismal performance even in fossil forms. The combination of both approaches offers a novel and robust methodological framework to test competing hypotheses on the functional and developmental drivers of phenotypic evolution and evolutionary convergence
Dental Caries in the Fossil Record: A Window to the Evolution of Dietary Plasticity in an Extinct Bear
During the late Pleistocene of North America (â36,000 to 10,000 years ago), saber-toothed cats, American lions, dire wolves, and coyotes competed for prey resources at Rancho La Brea (RLB). Despite the fact that the giant short-faced bear (Arctodus simus) was the largest land carnivoran present in the fauna, there is no evidence that it competed with these other carnivores for prey at the site. Here, for the first time, we report carious lesions preserved in specimens of A. simus, recovered from RLB. Our results suggest that the population of A. simus from RLB was more omnivorous than the highly carnivorous populations from the Northwest. This dietary variation may be a consequence of different competitive pressures
Ecomorphology of Carnivora challenges convergent evolution
Convergent evolution is often reported in the mammalian order Carnivora. Their adaptations to particularly demanding feeding habits such as hypercarnivory and durophagy (consumption of tough food) appear to favour morphological similarities between distantly related species, especially in the skull. However, phylogenetic effect in phenotypic data might obscure such a pattern. We first validated the hypotheses that extant hypercarnivorous and durophagous large carnivorans converge in mandibular shape and form (size and shape). Hypercarnivores generally exhibit smaller volumes of the multidimensional shape and form space than their sister taxa, but this pattern is significantly different from random expectation only when hunting behaviour categorisations are taken into account. Durophages share areas of the morphospace, but this seems to be due to factors of contingency. Carnivorans that hunt in pack exhibit incomplete convergence while even stronger similarities occur in the mandible shape of solitary hunters due to the high functional demands in killing the prey. We identified a stronger phylogenetic signal in mandibular shape than in size. The quantification of evolutionary rates of changes suggests that mandible shape of solitary hunters evolved slowly when compared with other carnivorans. These results consistently indicate that the need for a strong bite force and robust mandible override sheer phylogenetic effect in solitary hunters
Numerical evidence for the spin-Peierls state in the frustrated quantum antiferromagnet
We study the spin- Heisenberg antiferromagnet with an
antiferromagnetic (third nearest neighbor) interaction on a square
lattice. We numerically diagonalize this ``-'' model on clusters up
to 32-sites and search for novel ground state properties as the frustration
parameter changes. For ``larger'' we find enhancement of
incommensurate spin order, in agreement with spin-wave, large- expansions,
and other predictions. But for intermediate , the low lying excitation
energy spectrum suggests that this incommensurate order is short-range. In the
same region, the first excited state has the symmetries of the columnar dimer
(spin-Peierls) state. The columnar dimer order parameter suggests the presence
of long-range columnar dimer order. Hence, this spin-Peierls state is the best
candidate for the ground state of the - model in an intermediate
region.Comment: RevTeX file with five postscript figures uuencode
Resonating Valence Bond Wave Functions for Strongly Frustrated Spin Systems
The Resonating Valence Bond (RVB) theory for two-dimensional quantum
antiferromagnets is shown to be the correct paradigm for large enough ``quantum
frustration''. This scenario, proposed long time ago but never confirmed by
microscopic calculations, is very strongly supported by a new type of
variational wave function, which is extremely close to the exact ground state
of the Heisenberg model for .
This wave function is proposed to represent the generic spin-half RVB ground
state in spin liquids.Comment: 4 Pages, 5 figures, accepted for publication in PR
Simulations of pure and doped low-dimensional spin-1/2 gapped systems
Low dimensional spin-1/2 systems with antiferromagnetic interactions display
very innovative features, driven by strong quantum fluctuations. In particular,
geometrical effects or competing magnetic interactions can give rise to the
formation of a spin gap between the singlet ground state and the first excited
triplet state. In this chapter, we focus on the numerical investigation of such
systems by Exact Diagonalisation methods and some extensions of it including a
simultaneous mean-field treatment of some perturbative couplings. After a
presentation of the Lanczos algorithm and a description of the space group
symmetries, we give a short review on some pure low-dimensionnal frustrated
spin gapped systems. In particular, we outline the role of the magnetic
frustration in the formation of disordered phase. A large part is also devoted
to frustrated Spin-Peierls systems for which the role of interchain couplings
as well as impurity doping effects has been studied numerically.Comment: Chapter book in Quantum Magnetism, Lecture Notes in Physics (2004
Field induced ordering in highly frustrated antiferromagnets
We predict that an external field can induce a spin order in highly
frustrated classical Heisenberg magnets. We find analytically stabilization of
collinear states by thermal fluctuations at a one-third of the saturation field
for kagome and garnet lattices and at a half of the saturation field for
pyrochlore and frustrated square lattices. This effect is studied numerically
for the frustrated square-lattice antiferromagnet by Monte Carlo simulations
for classical spins and by exact diagonalization for . The field induced
collinear states have a spin gap and produce magnetization plateaus.Comment: 4 pages, new analytical proof the order by disorder by thermal
fluctuations is adde
Quantum disorder in the two-dimensional pyrochlore Heisenberg antiferromagnet
We present the results of an exact diagonalization study of the spin-1/2
Heisenberg antiferromagnet on a two-dimensional version of the pyrochlore
lattice, also known as the square lattice with crossings or the checkerboard
lattice. Examining the low energy spectra for systems of up to 24 spins, we
find that all clusters studied have non-degenerate ground states with total
spin zero, and big energy gaps to states with higher total spin. We also find a
large number of non-magnetic excitations at energies within this spin gap.
Spin-spin and spin-Peierls correlation functions appear to be short-ranged, and
we suggest that the ground state is a spin liquid.Comment: 7 pages, 11 figures, RevTeX minor changes made, Figure 6 correcte
Spontaneous plaquette dimerization in the Heisenberg model
We investigate the non magnetic phase of the spin-half frustrated Heisenberg
antiferromagnet on the square lattice using exact diagonalization (up to 36
sites) and quantum Monte Carlo techniques (up to 144 sites). The spin gap and
the susceptibilities for the most important crystal symmetry breaking operators
are computed. A genuine and somehow unexpected `plaquette RVB', with
spontaneously broken translation symmetry and no broken rotation symmetry,
comes out from our numerical simulations as the most plausible ground state for
.Comment: 4 pages, 5 postscript figure
Kretzoiarctos gen. nov., the Oldest Member of the Giant Panda Clade
The phylogenetic position of the giant panda, Ailuropoda melanoleuca (Carnivora: Ursidae: Ailuropodinae), has been one of the most hotly debated topics by mammalian biologists and paleontologists during the last century. Based on molecular data, it is currently recognized as a true ursid, sister-taxon of the remaining extant bears, from which it would have diverged by the Early Miocene. However, from a paleobiogeographic and chronological perspective, the origin of the giant panda lineage has remained elusive due to the scarcity of the available Miocene fossil record. Until recently, the genus Ailurarctos from the Late Miocene of China (ca. 8â7 mya) was recognized as the oldest undoubted member of the Ailuropodinae, suggesting that the panda lineage might have originated from an Ursavus ancestor. The role of the purported ailuropodine Agriarctos, from the Miocene of Europe, in the origins of this clade has been generally dismissed due to the paucity of the available material. Here, we describe a new ailuropodine genus, Kretzoiarctos gen. nov., based on remains from two Middle Miocene (ca. 12â11 Ma) Spanish localities. A cladistic analysis of fossil and extant members of the Ursoidea confirms the inclusion of the new genus into the Ailuropodinae. Moreover, Kretzoiarctos precedes in time the previously-known, Late Miocene members of the giant panda clade from Eurasia (Agriarctos and Ailurarctos). The former can be therefore considered the oldest recorded member of the giant panda lineage, which has significant implications for understanding the origins of this clade from a paleobiogeographic viewpoint
- âŠ