168 research outputs found

    Short-term health effects in the general population following a major train accident with acrylonitrile in Belgium

    Get PDF
    Background: Following a train derailment, several tons of acrylonitrile (ACN) exploded, inflamed and part of the ACN ended up in the sewage system of the village of Wetteren. More than 2000 residents living in the close vicinity of the accident and along the sewage system were evacuated. A human biomonitoring study of the adduct N-2-cyanoethylvaline (CEV) was carried out days 14-21 after the accident. Objectives: (1) To describe the short-term health effects that were reported by the evacuated residents following the train accident, and (2) to explore the association between the CEV concentrations, extrapolated at the time of the accident, and the self-reported short-term health effects. Methods: Short-term health effects were reported in a questionnaire (n=191). An omnibus test of independence was used to investigate the association between the CEV concentrations and the symptoms. Dose-response relationships were quantified by Generalized Additive Models (GAMs). Results: The most frequently reported symptoms were local symptoms of irritation. In non-smokers, dose-dependency was observed between the CEV levels and the self-reporting of irritation (p=0.007) and nausea (p=0.007). Almost all non-smokers with CEV concentrations above 100 pmol/g globin reported irritation symptoms. Both absence and presence of symptoms was reported by non-smokers with CEV concentrations below the reference value and up to 10 times the reference value. Residents who visited the emergency services reported more symptoms. This trend was seen for the whole range of CEV concentrations, and thus independently of the dose. Discussion and conclusion: The present study is one of the first to relate exposure levels to a chemical released during a chemical incident to short-term (self-reported) health effects. A dose-response relation was observed between the CEV concentrations and the reporting of short-term health effects in the non-smokers. Overall, the value of self-reported symptoms to assess exposure showed to be limited. The results of this study confirm that a critical view should be taken when considering self-reported health complaints and that ideally biomarkers are monitored to allow an objective assessment of exposure

    Foaming and air-water interfacial characteristics of solutions containing both gluten hydrolysate and egg white protein

    Get PDF
    Enzymatically hydrolyzed wheat gluten can be a viable alternative for traditional animal-based foam stabilizing proteins in food systems. Gluten hydrolysates (GHs) can be considered for (partially) replacing surface-active food proteins such as those of egg white (EW). We here studied the foaming and air-water (A-W) interfacial characteristics of mixed GH + EW protein solutions. GH solutions had much higher (P < 0.05) foaming capacities than EW solutions, while the latter had much higher (P < 0.05) foam stability than the former. When only one sixth of EW proteins was replaced by GHs, the foaming capacity of the mixtures was as high as or higher than that of the GH solutions. Furthermore, when half of the EW protein was replaced by GH, the mixtures still had high foam stability. It thus seems that both GH and EW proteins contribute positively to the foaming characteristics of the mixtures. However, measurements of the early stages of diffusion to and adsorption at the interface, plus measurements of surface dilatational moduli at the interface, both suggested that the adsorbed protein film consists primarily of GHs rather than of EW proteins. Nonetheless, FS was higher when EW proteins were present. Mixed GH + EW solutions have a higher resistance to coalescence than GH solutions. Therefore, it is hypothesized that EW proteins form a secondary protein layer below the A-W interface which is maintained by interactions with adsorbed GH constituents, thereby providing bubbles with an additional resistance to coalescence

    Microbial Ligand Costimulation Drives Neutrophilic Steroid-Refractory Asthma

    Get PDF
    This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Asthma is a heterogeneous disease whose etiology is poorly understood but is likely to involve innate responses to inhaled microbial components that are found in allergens. The influence of these components on pulmonary inflammation has been largely studied in the context of individual agonists, despite knowledge that they can have synergistic effects when used in combination. Here we have explored the effects of LPS and β-glucan, two commonly-encountered microbial agonists, on the pathogenesis of allergic and non-allergic respiratory responses to house dust mite allergen. Notably, sensitization with these micro-bial components in combination acted synergistically to promote robust neutrophilic inflammation, which involved both Dectin-1 and TLR-4. This pulmonary neutrophilic inflammation was corticosteroid-refractory, resembling that found in patients with severe asthma. Thus our results provide key new insights into how microbial components influence the development of respiratory pathology

    Noise-Aided Logic in an Electronic Analog of Synthetic Genetic Networks

    Get PDF
    We report the experimental verification of noise-enhanced logic behaviour in an electronic analog of a synthetic genetic network, composed of two repressors and two constitutive promoters. We observe good agreement between circuit measurements and numerical prediction, with the circuit allowing for robust logic operations in an optimal window of noise. Namely, the input-output characteristics of a logic gate is reproduced faithfully under moderate noise, which is a manifestation of the phenomenon known as Logical Stochastic Resonance. The two dynamical variables in the system yield complementary logic behaviour simultaneously. The system is easily morphed from AND/NAND to OR/NOR logi

    Immediate remote ischemic postconditioning after hypoxia ischemia in piglets protects cerebral white matter but not grey matter

    Get PDF
    Remote ischemic postconditioning (RIPostC) is a promising therapeutic intervention whereby brief episodes of ischemia/reperfusion of one organ (limb) mitigate damage in another organ (brain) that has experienced severe hypoxia-ischemia. Our aim was to assess whether RIPostC is protective following cerebral hypoxia-ischemia in a piglet model of neonatal encephalopathy (NE) using magnetic resonance spectroscopy (MRS) biomarkers and immunohistochemistry. After hypoxia-ischemia (HI), 16 Large White female newborn piglets were randomized to: (i) no intervention (n = 8); (ii) RIPostC - with four, 10-min cycles of bilateral lower limb ischemia/reperfusion immediately after HI (n = 8). RIPostC reduced the hypoxic-ischemic-induced increase in white matter proton MRS lactate/N acetyl aspartate (p = 0.005) and increased whole brain phosphorus-31 MRS ATP (p = 0.039) over the 48 h after HI. Cell death was reduced with RIPostC in the periventricular white matter (p = 0.03), internal capsule (p = 0.002) and corpus callosum (p = 0.021); there was reduced microglial activation in corpus callosum (p = 0.001) and more surviving oligodendrocytes in corpus callosum (p = 0.029) and periventricular white matter (p = 0.001). Changes in gene expression were detected in the white matter at 48 h, including KATP channel and endothelin A receptor. Immediate RIPostC is a potentially safe and promising brain protective therapy for babies with NE with protection in white but not grey matter

    Microbial ligand costimulation drives neutrophilic steroid-refractory asthma

    Get PDF
    Funding: The authors thank the Wellcome Trust (102705) and the Universities of Aberdeen and Cape Town for funding. This research was also supported, in part, by National Institutes of Health GM53522 and GM083016 to DLW. KF and BNL are funded by the Fonds Wetenschappelijk Onderzoek, BNL is the recipient of an European Research Commission consolidator grant and participates in the European Union FP7 programs EUBIOPRED and MedALL. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Peer reviewedPublisher PD

    Generating Random Logic Programs Using Constraint Programming

    Get PDF
    Testing algorithms across a wide range of problem instances is crucial to ensure the validity of any claim about one algorithm's superiority over another. However, when it comes to inference algorithms for probabilistic logic programs, experimental evaluations are limited to only a few programs. Existing methods to generate random logic programs are limited to propositional programs and often impose stringent syntactic restrictions. We present a novel approach to generating random logic programs and random probabilistic logic programs using constraint programming, introducing a new constraint to control the independence structure of the underlying probability distribution. We also provide a combinatorial argument for the correctness of the model, show how the model scales with parameter values, and use the model to compare probabilistic inference algorithms across a range of synthetic problems. Our model allows inference algorithm developers to evaluate and compare the algorithms across a wide range of instances, providing a detailed picture of their (comparative) strengths and weaknesses.Comment: This is an extended version of the paper published in CP 202
    corecore