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HIGHLIGHTS

 Gluten hydrolysate (GH) solutions had high foaming capacity

 Egg white (EW) protein solutions had high foam stability

 Mixed solutions had both high foaming capacity and stability

 Nonetheless, the interface composition seemed to consist mainly of adsorbed GHs

 EW proteins may form a secondary interfacial layer by interacting with adsorbed GHs
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1 ABSTRACT 

2 Enzymatically hydrolyzed wheat gluten can be a viable alternative for traditional animal-based 

3 foam stabilizing proteins in food systems. Gluten hydrolysates (GHs) can be considered for 

4 (partially) replacing surface-active food proteins such as those of egg white (EW). We here studied 

5 the foaming and air-water (A-W) interfacial characteristics of mixed GH + EW protein solutions. 

6 GH solutions had much higher (P < 0.05) foaming capacities than EW solutions, while the latter 

7 had much higher (P < 0.05) foam stability than the former. When only one sixth of EW proteins 

8 was replaced by GHs, the foaming capacity of the mixtures was as high as or higher than that of 

9 the GH solutions. Furthermore, when half of the EW protein was replaced by GH, the mixtures 

10 still had high foam stability. It thus seems that both GH and EW proteins contribute positively to 

11 the foaming characteristics of the mixtures. However, measurements of the early stages of 

12 diffusion to and adsorption at the interface, plus measurements of surface dilatational moduli at 

13 the interface, both suggested that the adsorbed protein film consists primarily of GHs rather than 

14 of EW proteins. Nonetheless, FS was higher when EW proteins were present. Mixed GH + EW 

15 solutions have a higher resistance to coalescence than GH solutions. Therefore, it is hypothesized 

16 that EW proteins form a secondary protein layer below the A-W interface which is maintained by 

17 interactions with adsorbed GH constituents, thereby providing bubbles with an additional 

18 resistance to coalescence.

19

20 Keywords: Air-water interfacial properties; Gluten; Hydrolysates; Egg white proteins; Foam
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21 1. INTRODUCTION

22

23 Food foams are dispersions of gas, usually air, in a continuous phase, usually water. They provide 

24 structure and texture to a wide variety of food products, such as meringues, cakes, and 

25 (chocolate) mousses (Foegeding & Davis, 2011; Foegeding, Luck, & Davis, 2006). Foams are 

26 thermodynamically unstable, but can be stabilized by proteins (Damodaran, 2005; Murray, 2007). 

27 Because of their amphiphilic nature, proteins can adsorb at air-water (A-W) interfaces. This results 

28 in a decrease of surface tension, in electrostatic and steric repulsion of adjoining gas bubbles at 

29 which they are adsorbed, and in the formation of a viscoelastic protein film around these gas 

30 bubbles (Damodaran, 2005; Hunter, Pugh, Franks, & Jameson, 2008; Murray, 2007). Mostly, 

31 animal proteins, such as those of hen egg white (EW), are used in food foam applications, because 

32 of their excellent functionality and desirable organoleptic properties. However, EW is rather 

33 expensive and its production has a significant environmental impact (Alexandratos & Bruinsma, 

34 2006; Herrero et al., 2011; Lusk & Norwood, 2009). In contrast, the production of plant proteins 

35 is cheaper and more sustainable, but these proteins often lack functionality and/or solubility in 

36 aqueous media (Day, 2013). A notable example is the wheat gluten proteins, a co-product of the 

37 industrial starch isolation process (Van Der Borght, Goesaert, Veraverbeke, & Delcour, 2005). 

38 Their solubility can be substantially improved by controlled enzymatic hydrolysis, which also 

39 induces foaming properties (Adler-Nissen, 1977; Wouters, Rombouts, Fierens, Brijs, & Delcour, 

40 2016a). In previous work by our group, the relationship between the foaming, structural and A-

41 W interfacial characteristics (rate of diffusion to and adsorption at the interface, protein film 

42 properties) of such gluten hydrolysates (GHs) in water (Wouters et al., 2016b, 2016c; Wouters et 
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43 al., 2017d) was studied, including under conditions more relevant to food products (Wouters et 

44 al., 2017a; Wouters et al., 2017b; Wouters et al., 2017c). More specifically, the impact of pH 

45 (Wouters et al., 2017b) and the presence of common food constituents such as ethanol (Wouters 

46 et al., 2017c) or sucrose (Wouters et al., 2017a) on GH interfacial and foaming behavior were 

47 investigated. However, other surface-active constituents such as low molecular mass surfactants 

48 (LMMS) or other proteins may also be present in food systems. Numerous studies on mixed 

49 protein-LMMS interfaces have been published. Such interfaces are often not very stable because 

50 LMMS disrupt the way proteins stabilize interfaces and vice versa. Interested readers are referred 

51 to some excellent reviews on the matter (Maldonado-Valderrama & Patino, 2010; Miller et al., 

52 2000; Rodríguez Patino, Rodríguez Niño, & Carrera Sánchez, 2007b; Wilde, Mackie, Husband, 

53 Gunning, & Morris, 2004; Wilde, 2000). Here, the focus is on mixed protein � protein interfaces.

54

55 When at least two different proteins coexist, they do not necessarily adsorb at an A-W interface 

56 in equal proportions. This phenomenon is referred to as competitive adsorption. It is controlled 

57 by several factors (Dickinson, 2011; Razumovsky & Damodaran, 1999). First, there is an energy 

58 barrier for adsorption at the A-W interface (Damodaran, 2004). Molecular properties of proteins 

59 such as their hydrophobicity determine how easily proteins can overcome such barrier . 

60 Wierenga, Meinders, Egmond, Voragen & de Jongh (2003) have shown that caprylated ovalbumin, 

61 which is more hydrophobic than its parent molecule, adsorbs more easily at an A-W interface 

62 than non-modified ovalbumin. In mixtures of proteins, their respective affinities for the interface 

63 therefore in part determine the ease with and the extent to which they adsorb at an interface. 

64 Second, a kinetic aspect should be considered. Small hydrophobic proteins diffuse more rapidly 
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65 towards the interface, which gives them an advantage in dominating the interface (Damodaran, 

66 2004; Dickinson, 2011). Several studies have shown that the interface composition is mostly 

67 determined by this kinetic aspect. In mixed β-casein + lysozyme (Xu & Damodaran, 1994), 

68 lysozyme + bovine serum albumin (BSA) (Anand & Damodaran, 1995) and β-casein + BSA (Cao & 

69 Damodaran, 1995) systems, the extent of adsorption of the proteins at the A-W interface depends 

70 on their order of arrival at the interface. These studies also reported that, in sequential adsorption 

71 experiments, in which one protein was added only after the other one had already adsorbed at 

72 the A-W interface, no second protein displaced the first protein from the interface. This is in 

73 contrast with the so-called orogenic displacement mechanism in mixed LMMS-protein systems 

74 which was first introduced by Mackie, Gunning, Wilde & Morris (1999). It seems that most 

75 globular proteins adsorb strongly at interfaces, making their desorption in favor of other proteins 

76 unlikely (Dickinson, 2011). An exception to this is a mixed αs1-casein + β-casein system in which 

77 both proteins displace each other from the interface under certain conditions (Anand & 

78 Damodaran, 1996). The latter was also found to be the case for the same protein mixture but at 

79 an oil-water interface (Dickinson, 1991). Furthermore, already adsorbed proteins affect the ability 

80 of other proteins to also adsorb at the A-W interface (Razumovsky & Damodaran, 1999). This was 

81 noted for a number of common food proteins (amongst which α-lactalbumin, β-lactoglobulin, α-

82 caseins, β-caseins, BSA, lysozyme and ovalbumin). These proteins show Langmuir-like adsorption 

83 behavior at an A-W interface. However, binary mixtures of the same proteins no longer follow 

84 this model (Razumovsky & Damodaran, 1999, 2001). The effect was ascribed to thermodynamic 

85 incompatibility of proteins, which arises from unfavorable protein-protein interactions and 

86 differences in protein-solvent interactions, both of which depend on the intrinsic molecular 
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87 properties of the proteins (Damodaran, 2004; Polyakov, Grinberg, & Tolstoguzov, 1997; Polyakov, 

88 Popello, Grinberg, & Tolstoguzov, 1986; Razumovsky & Damodaran, 1999). 

89

90 Thermodynamic incompatibility at A-W interfaces may also result in phase separation of 

91 adsorbed protein molecules in mixed protein films (Damodaran, 2004; Dickinson, 2011). For 

92 example, with mixtures of 11S soy globulin + β-casein, the acidic subunits of soy 11S globulins + 

93 β-casein, or mixtures of α-lactalbumin + β-casein, the interfaces do not show any signs of phase 

94 separation at the interface up to 24 h after adsorption. However, over a longer time frame (96 h), 

95 significant phase separation does occur, with β-casein always forming the more continuous phase 

96 of the film while the other protein occurs in dispersed patches (Sengupta & Damodaran, 2001). 

97 Similarly, in mixed β-casein + BSA films, separate regions of both proteins can be distinguished at 

98 the interface, pointing to interfacial phase separation (Sengupta & Damodaran, 2000). In contrast, 

99 Mackie, Gunning, Ridout, Wilde & Morris (2001) and Ridout, Mackie & Wilde (2004) reported that 

100 both proteins of a β-casein + β-lactoglobulin system formed homogeneous films at the interface 

101 with no signs of phase separation. Of importance regarding these varying observations is that the 

102 above mentioned studies by Damodaran and co-workers (Anand & Damodaran, 1995, 1996; Cao 

103 & Damodaran, 1995; Razumovsky & Damodaran, 1999, 2001; Sengupta & Damodaran, 2000, 

104 2001; Xu & Damodaran, 1994) have used a radiolabeling method to study the adsorption and 

105 phase separation characteristics of mixed protein systems at the interface. It has been noted 

106 (Murray, 1997) that some radiolabeled proteins might display different surface activity than their 

107 native forms, which should of course be considered and may explain some of the contrasting 

108 findings in studies by different research groups above.
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109

110 Mixed protein interfaces may also result in synergistic effects. For example, the cationic peptide 

111 protamine strongly improves the foaming characteristics of BSA, even though it does not display 

112 any surface activity itself. It has been suggested that electrostatic interactions between BSA and 

113 protamine lead to improved overall foaming properties (Glaser, Paulson, Speers, Yada, & 

114 Rousseau, 2007). In another study, mixed β-conglycinin + β-lactoglobulin films had higher 

115 interfacial elasticity values than did films of the separate proteins (Ruiz-Henestrosa, Martinez, 

116 Sanchez, Rodríguez Patino, & Pilosof, 2014). Furthermore, the addition of fish scale gelatin to EW 

117 protein improves the overall foaming properties, probably by strengthening the viscoelastic layer 

118 around the gas bubbles (Huang et al., 2017).

119 However, the most notable example of such synergistic effects is probably that encountered in 

120 hen EW, which contains a mixture of proteins, among which ovalbumin, ovotransferrin, 

121 ovomucoid, ovomucin, lysozyme and ovoglobulins. Many studies investigating the air-water 

122 interfacial or foaming characteristics of EW proteins have focused on its main protein, ovalbumin. 

123 However, the exceptional foaming properties of EW cannot merely be ascribed to the 

124 functionality of ovalbumin. They have been attributed to a cooperative effect exerted by its 

125 structurally different proteins (Dickinson, 1989; Dickinson, 2011; Lomakina & Mikova, 2006; Mine, 

126 1995; Stevens, 1991). For example, recent studies have shown better foaming and A-W interfacial 

127 film properties in mixed lysozyme + ovalbumin systems than with the separate proteins (Le Floch-

128 Fouéré et al., 2010; Le Floch-Fouéré et al., 2009). In this context, Damodaran, Anand & 

129 Razumovsky (1998) have described the formation of electrostatic complexes of lysozyme with 

130 other EW proteins at the A-W interface.
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131

132 EW production is not very sustainable and EW is rather expensive. It is therefore important to 

133 consider plant-based alternatives such as the GHs which have already been discussed. As 

134 complete replacement of EW proteins in food products is difficult, we here studied the foaming, 

135 air-water interfacial (diffusion, adsorption and protein film) characteristics of mixed GH + EW 

136 protein solutions. This will render relevant mechanistic information on the interaction of these 

137 structurally different protein types at A-W interfaces and also be relevant for rational 

138 incorporation of GHs into food products as foaming agents.

139

140 2. MATERIALS AND METHODS

141

142 2.1 Materials

143

144 Commercial wheat gluten was kindly provided by Tereos Syral (Aalst, Belgium). It contained 82.4% 

145 protein (N x 5.7) on dry matter basis when determined using an adaptation of AOAC Official 

146 Method 990.03 (AOAC, 1995) to an EA1108 Elemental Analyzer (Carlo Erba/Thermo Scientific, 

147 Waltham, MA, USA). Trypsin (EC 3.4.21.4) from porcine pancreas and pepsin (EC 3.4.23.1) from 

148 porcine gastric mucosa were from Sigma-Aldrich (Bornem, Belgium), as were all other chemicals, 

149 solvents and reagents, unless otherwise specified. All filtrations were with Whatman (Maidstone, 

150 UK) paper filters (pore size 4-7 µm). Commercial dry EW powder with a protein content of 84.2% 

151 (on a dry matter basis) was obtained from Lodewijckx (Veerle-Laakdal, Belgium).

152
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153 2.2 Enzymatic hydrolysis 

154

155 Enzymatic hydrolysis of a 6.0% (wprotein/v) wheat gluten aqueous dispersion was carried out with 

156 trypsin or pepsin at pH-stat conditions in a Titrino 718 device (Metrohm, Herisau, Switzerland) as 

157 described earlier by Wouters et al. (2016b). For both enzymes, gluten was hydrolyzed to degrees 

158 of hydrolysis (DH) 2 and 6. The DH reflects the percentage of initially present peptide bonds which 

159 have been hydrolysed (see below). For tryptic hydrolysis, pH-stat conditions were 50 °C and pH 

160 8.0. An enzyme to substrate ratio of 1:480 (DH 2) or 1:20 (DH 6) on protein mass basis was used. 

161 For peptic hydrolysis, the reactions were carried out at 37 °C and pH 3.5. In this case, an enzyme 

162 to substrate ratio of 1:1200 (DH 2) or 1:300 (DH 6) on protein mass basis was used.  When the 

163 desired DH was reached, the pH was adjusted to 6.0 and proteolysis was stopped by heating the 

164 protein suspension for 15 min at 95 °C. The mixtures were then cooled to room temperature and 

165 centrifuged (10 min, 12,000 g), and the supernatants were filtered over paper and then freeze-

166 dried. All further analyses, including those of protein contents (carried out as outlined in Section 

167 2.1), were conducted on the dry supernatants of DH 2 or DH 6 tryptic (further referred to as T2 

168 and T6, respectively) and peptic (further referred to as P2 and P6, respectively) hydrolysates. 

169

170 2.3 Determination of degree of hydrolysis

171

172 DH is the percentage of peptide bonds hydrolyzed (h) relative to the total number of peptide 

173 bonds (htot) per unit weight present in wheat gluten protein. It was calculated as reported earlier 
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174 (Wouters et al., 2016b) from the quantity of NaOH (trypsin) or HCl (pepsin) solution used to keep 

175 the pH constant during hydrolysis:

176 �� (%) =  
ℎℎ��� =

�.��.100�.��.ℎ���
177 with X the consumption (mL) of NaOH or HCl solution needed to keep the pH during hydrolysis 

178 constant and Mx the molarity of the acid or base (respectively 0.50 and 0.20 M). The term α is a 

179 measure for the degree of dissociation of the α-NH3
+ (neutral or alkaline conditions) or α-COOH 

180 group (acidic conditions). Under the given conditions, for tryptic hydrolysis α is 0.89 (Adler-Nissen, 

181 1985), whereas for peptic hydrolysis it is 0.29 (Diermayr & Dehne, 1990). Mp is the mass of protein 

182 used, h are hydrolysis equivalents [milli-equivalents (meqv)/g protein] and htot is the theoretical 

183 number of peptide bonds per unit weight present in gluten protein. Nielsen, Petersen & 

184 Dambmann (2001) calculated the latter to be 8.3 meqv/g protein. 

185

186 2.4 Foaming properties

187

188 Foaming properties were determined with a standardized stirring test identical to the one of 

189 Wouters et al. (2016b). An aliquot (50 mL) of T2, T6, P2 or P6 solutions (0.050%, and 0.150% 

190 wprotein/v), EW protein solutions (0.200%, 0.300%, 0.400%, 0.500% and 0.600% wprotein/v) and 

191 solutions containing GH + EW protein mixtures (0.050% wprotein/v hydrolysate with 0.250% 

192 wprotein/v EW protein or 0.150% wprotein/v hydrolysate with 0.150% wprotein/v EW protein) in 

193 deionized water (W) or in a 5.0% v/v ethanol solution (ES) was placed in a graduated glass cylinder 

194 (internal diameter 60.0 mm) in a water bath at 20 °C. After equilibration to this temperature for 

195 15 min, it was stirred for 70 s with a propeller (outer diameter 45.0 mm, thickness 0.4 mm) 
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196 rotating at about 2,000 rpm. After stirring, the propeller was immediately removed and the glass 

197 cylinder sealed with Parafilm M (Bemis, Neenah, WI, USA) to avoid foam disruption by air 

198 circulation. The FC is the foam volume exactly 2 min after the start of stirring. FS is measured by 

199 determining foam volume after 60 min and expressing it as percentage of the FC. Based on the 

200 foam height and the cylinder internal diameter, foam volume was calculated and expressed in 

201 mL. Mixtures of GHs and EW proteins are coded as in the following example: T20.050EW0.250 is a 

202 solution containing 0.050% wprotein/v T2 and 0.250% wprotein/v EW protein.

203

204 2.5 Maximum bubble pressure method

205

206 The rate and extent of diffusion to and adsorption at the A-W interface of T2, T6, P2 and P6 

207 solutions (0.050% and 0.150% wprotein/v), EW protein solutions (0.150%, 0.300%, 0.500% and 

208 0.700% wprotein/v) and solutions containing GH + EW protein mixtures (0.050% wprotein/v 

209 hydrolysate with 0.250% wprotein/v EW protein or 0.150% wprotein/v hydrolysate with 0.150% 

210 wprotein/v EW protein) were determined with the maximum bubble pressure method described 

211 elsewhere (Wouters et al., 2016b) after filtration over paper filters as described in section 2.1. In 

212 this method (Fainerman, Miller, & Joos, 1994), air bubbles are generated at a constant rate at 20 

213 °C through a capillary (diameter 0.200 mm) in the liquid phase. When the bubble radius equals 

214 the capillary radius (rcap), the pressure in the bubble is maximal (Pmax) and measured. This pressure 

215 can be used in the following equation (with P0 the initial hydrostatic pressure) to determine 

216 surface tension (γ):

217 � =
(���� ‒ �0).����

2
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218 Surface tension was determined as a function of surface age in a 5 ms to 10 s time frame. A typical 

219 profile was characterized by a constant surface tension (equal to that of water) up until a certain 

220 point, after which surface tension decreased linearly with the logarithm of surface age. The 

221 occurrence of such surface age region of constant surface tension depended on protein 

222 concentration. At sufficiently high protein concentrations, surface tension immediately decreased 

223 linearly with the logarithm of surface age. To characterize the moment at which surface tension 

224 started decreasing, a lag time was defined as the surface age when the surface tension had 

225 decreased to a value equal to or lower than 95% of the initial value, provided that there was an 

226 initial period in which surface tension was constant. This 95% value was chosen somewhat 

227 arbitrarily to allow systematic determination of lag times, rather than having to report visual 

228 estimates. The lag time is representative for the rate of diffusion (and possibly early stage of 

229 adsorption when surface tension had not yet decreased substantially) of proteins to the A-W 

230 interface. From the lag time onwards, surface tension thus decreased linearly as a function of the 

231 logarithm of surface age. A measure (|SST-t|) for the continuous adsorption and rearrangement of 

232 proteins at the interface was obtained by calculating the slope of the absolute value of this 

233 decrease of surface tension (starting from the lag time) as a function of logarithmic surface age.

234

235 2.7 (Oscillating) pendant drop measurements

236

237 Solutions of T2, T6, P2 and P6 (0.150% and 0.300% wprotein/v), EW protein solutions (0.150%, 

238 0.300%, 0.500%, 0.700% wprotein/v) and solutions containing GH + EW protein mixtures (0.050% 

239 wprotein/v hydrolysate with 0.250% wprotein/v EW protein or 0.150% wprotein/v hydrolysate with 



ACCEPTED MANUSCRIPT

13

240 0.150% wprotein/v EW protein) were filtered over paper filters as described in section 2.1 and 

241 introduced in a Theta optical tensiometer (Biolin Scientific Attension, Stockholm, Sweden) to 

242 create a pendant drop with a fixed volume of 8 µL. For every drop, the decrease in surface tension 

243 was measured over a 10 min time interval to assess protein adsorption and rearrangement at the 

244 A-W interface as described in Wouters et al. (2016b). During this period, images were taken at 1 

245 frame every 7 seconds. Subsequently, a sinusoidal oscillation (50 cycles) was performed at a 

246 frequency of 1 Hz with an amplitude set at 1.00 in the OneAttension software (Biolin Scientific 

247 Attension), which corresponded to a volume change of ± 1 µL. During oscillation, images were 

248 recorded at 7 frames per second. From the drop shape analysis during oscillation, the surface 

249 dilatational modulus E could be determined. E is the variation in surface tension per unit relative 

250 change in surface area (A) (Lucassen-Reynders, Benjamins, & Fainerman, 2010; Lucassen-

251 Reynders & Wasan, 1993).

252 � =
���ln �

253 where γ is surface tension.  E is a viscoelastic complex quantity. It consists of a real surface 

254 dilatational elastic (E�) and an imaginary dilatational viscous (E��) contribution, of which the latter 

255 is given by the product of a surface dilatational viscosity (ηd) and the frequency (ω) of the variation 

256 in A (Lucassen-Reynders et al., 2010; Lucassen-Reynders & Wasan, 1993).

257 � = �'
+ ��''

= �'
+ ����

258 Surface dilatational elastic moduli E� are reported here. After each measurement, the device was 

259 thoroughly cleaned and the surface tension of pure water was checked to be 72.0 ± 0.5 mN/m, 

260 before initiating the next measurement.

261
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262 2.6 Surface shear viscosity measurements

263

264 Surface shear viscosity measurements were performed with a two-dimensional Couette-type 

265 interfacial viscometer in a set-up similar to that described by Borbas, Murray & Kiss (2003), 

266 Murray and Dickinson (1996) and Burke, Cox, Petkov & Murray (2014). Solutions of T2, T6, P2 or 

267 P6 (0.300% wprotein/v), EW protein (0.300% wprotein/v) or GH + EW protein mixtures (0.050% 

268 wprotein/v hydrolysate with 0.250% wprotein/v EW protein or 0.150% wprotein/v hydrolysate with 

269 0.150% wprotein/v EW protein) were filtered over paper as described in section 2.1 and placed in a 

270 circular dish. A circular biconical disc hanging from a wire (0.10 mm diameter) with a known 

271 torsion constant (3.4822 x 10-6 Nm/rad) was positioned with its bottom edge at the A-W interface 

272 of these protein solutions. A laser beam reflected off a mirror, mounted on the hanging disc, on 

273 a scale at a fixed distance from the disc. The dish containing the protein solution was able to 

274 rotate at a constant (shear) rate. When protein material adsorbed at the A-W interface and 

275 yielded a measurable surface shear viscosity, the rotation of the dish caused a deflection of the 

276 hanging disc at the interface, and thus of the laser beam. The motion of the laser beam on the 

277 scale, and thus the deflection of the disc over time was recorded digitally via a charge coupled 

278 device camera. The surface shear viscosity η as a function of time was then calculated as

279 � =

(
� ‒ 2� ‒ � ‒ 2

04� ) × � × ���
280 with Ri the radius of the disc (1.5 cm), R0 the radius of the dish (7.5 cm), ω the angular velocity of 

281 the dish (1.270 x 10-3 rad/s) , K the torsion constant of the wire and θi the angle of rotation of the 
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282 disk.  The fixed velocity (i.e., shear rate) was chosen so as to allow comparison with previous 

283 measurements on other systems (Burke et al., 2014).

284

285 2.8 Bubble disproportionation measurements

286

287 Bubble disproportionation experiments were performed with a methodology thoroughly 

288 described by Dickinson, Ettelaie, Murray & Du (2002) and outlined more briefly here. Solutions of 

289 T2, T6, P2 or P6 (0.300% wprotein/v), EW protein (0.300% wprotein/v) or GH + EW protein mixtures 

290 (0.050% wprotein/v hydrolysate with 0.250% wprotein/v EW protein or 0.150% wprotein/v hydrolysate 

291 with 0.150% wprotein/v EW protein) were filtered over paper as described in section 2.1 and poured 

292 into a stainless steel cell. Bubbles were introduced in the middle of the cell and allowed to rise to 

293 the planar A-W interface at the top of the cell. They were then trapped in the circular opening of 

294 a paraffin wax-coated mica sheet floating in the middle of this planar A-W interface. To avoid the 

295 effects of the shrinkage of adjacent bubbles on the shrinkage of individual bubbles (Ettelaie, 

296 Dickinson, Du, & Murray, 2003), only bubbles positioned at a distance of at least twice their own 

297 radius from all other bubbles were considered. The bubbles were illuminated from below and 

298 images captured using a microscope and a video camera. Bubble radii were determined with 

299 ImageJ (NIH, Bethesda, MD, USA) image analysis software (Schneider, Rasband, & Eliceiri, 2012) 

300 and plotted over time until the bubbles had shrunk to a size which could no longer be detected 

301 with the microscope and camera set-up (< 10 µm) (see also Figure 1). To compare different 

302 samples, the total shrinkage time of each air bubble was plotted as a function of its initial bubble 

303 radius.
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304

305 2.9 Bubble coalescence measurements

306

307 Bubble coalescence experiments were conducted in a set-up and methodology similar to the one 

308 described in section 2.8 and described in detail previously (Murray et al., 2002; Murray, Dickinson, 

309 Lau, Nelson, & Schmidt, 2005). As in section 2.8, solutions of T2, T6, P2 or P6 (0.300% wprotein/v), 

310 EW protein (0.300% wprotein/v) and GH + EW protein mixtures (0.050% wprotein/v hydrolysate with 

311 0.250% wprotein/v EW protein or 0.150% wprotein/v hydrolysate with 0.150% wprotein/v EW protein) 

312 were filtered over paper as described in section 2.1 and poured into a stainless steel cell. Air 

313 bubbles introduced in the solution rose to the planar A-W interface, where they were trapped in 

314 the circular opening of a paraffin wax-coated mica sheet floating in the middle of this planar A-W 

315 interface. The top of the steel cell was sealed using a rubber O-ring and a glass plate. In an 

316 adjacent connected chamber of the steel cell, a steel piston was moved up or down in a controlled 

317 way. Because the system was sealed off entirely, the pressure in the air phase above the planar 

318 A-W interface could be decreased and increased again in a controlled manner by moving the 

319 piston upwards and downwards, respectively. The pressure drop caused air bubbles to expand, 

320 thereby stretching the adsorbed protein film at their surface. During this process, depending on 

321 the strength of the protein film stabilizing them, some bubbles coalesced.  A relatively short time 

322 (1 to 2 min) after the pressure decrease had ceased, coalescence no longer occurred and the 

323 remaining bubbles were stable (note, the bubbles were stable to coalescence if no pressure drop 

324 was applied).  At this point, the pressure was again increased to its initial value. The fraction of 

325 coalesced bubbles for a given sample provides a very discriminating measure of the ability of 
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326 different systems to stabilize gas bubbles against coalescence (Murray et al., 2002). This 

327 procedure was performed at least 10 times for each sample. The total fraction of coalesced gas 

328 bubbles was then calculated for each sample. Figure 2 gives an example of a typical bubble 

329 coalescence measurement.

330

331 2.10 Statistical analysis 

332

333 All determinations of foaming properties and oscillating pendant drop measurements were at 

334 least in triplicate. MBP measurements and surface shear viscosity measurements were carried 

335 out at least in duplicate. Error bars or values in all figures and tables represent the standard 

336 deviation from the means. All data was analyzed using statistical software JMP Pro 12 (SAS 

337 Institute, Cary, NC, USA). One way analysis of variance (ANOVA) was performed, followed by a 

338 Tukey multiple comparison test as post-hoc analysis to detect significant differences, both at a 

339 significance level P = 0.05. 

340

341 3. RESULTS AND DISCUSSION

342

343 3.1 Foaming properties

344

345 Figure 3 compares foaming characteristics of GH (0.050% or 0.150% wprotein/v), EW (0.300% 

346 wprotein/v) and mixed GH + EW (GH0.050EW0.250 or GH0.150EW0.150) protein solutions. A first striking 

347 observation is that even at a protein concentration six times as high as that of corresponding GH 
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348 solutions, an EW protein solution had much lower (P < 0.05) FC. In contrast, while FS of EW0.300 

349 was around 80%, that of the GH solutions at 0.150% wprotein/v ranged between 32% and 71% 

350 depending, on the sample tested. A further increase in protein concentration of GH solutions from 

351 0.150% to 0.300% wprotein/v (data not shown) did increase FS values. As also reported earlier, there 

352 were no significant differences (P > 0.05) in FC between the different GHs, but DH 2 hydrolysates 

353 had higher (P < 0.05) FS than DH 6 hydrolysates, explained by a higher average molecular mass 

354 and the presence of some specific hydrophobic peptides in the former samples (Wouters et al., 

355 2016b; Wouters et al., 2017d).

356

357 Thus, overall, EW protein solutions had lower FC but higher FS than GH solutions. It is likely that 

358 GH constituents because of their lower average molecular mass and higher molecular flexibility 

359 diffuse to and adsorb at the A-W interface more rapidly than the large and bulky EW proteins and 

360 thus have higher FC than EW proteins. In contrast, EW proteins can form stronger films at the A-

361 W interface than GH peptides, which explains the higher FS of the former. It remains to be 

362 investigated how partial substitution of EW proteins by GHs would impact their foaming 

363 characteristics.  

364

365 Replacing 0.050% wprotein/v of EW protein by any of the GHs substantially increased the FC. 

366 Indeed, values as high or higher than those of 0.050% wprotein/v solutions of the GHs were noted. 

367 Similar results were obtained when 0.150% wprotein/v of EW protein was replaced by any of the 

368 GHs. At a relatively low degree of EW protein substitution by any of the GHs (GH0.050EW0.250), FS 

369 remained high as was the case for EW protein solutions. Even when half of the EW protein was 
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370 replaced by GHs, which intrinsically had lower FS than the former, this was still the case. It is of 

371 note that, while there were differences in FS between the different GH solutions, such differences 

372 were no longer noted in the mixed systems. Irrespective of which GH sample was used to replace 

373 EW proteins, the result was the same.

374

375 The presence of GHs, which had better FC than EW proteins, led to high FC values in the mixtures, 

376 while the presence of EW proteins, which had better FS than GHs, led to high FS values in the 

377 mixtures. These results suggest that both GHs and EW proteins are present at the A-W interface 

378 and play a role in stabilizing the interface. In the next sections the A-W interfacial properties of 

379 GH + EW protein mixtures are discussed in detail. Of note is that while such determination of A-

380 W interfacial characteristics is surely to a large extent relevant for the foaming characteristics of 

381 protein solutions, it should still be kept in mind that there also differences between both types of 

382 analyses. In the foam tests, protein solutions are whipped while in surface tension and surface 

383 rheology measurements, protein molecules diffuse to and adsorb at the interface, without 

384 considerable energy input in the system. Thus, it cannot be guaranteed that the interfacial 

385 composition in these different tests is exactly the same. Nonetheless, investigating the A-W 

386 interfacial characteristics of mixed GH � EW protein solutions will yield important information to 

387 better understand their interplay at the interface.

388

389 3.2 Diffusion and adsorption characteristics at the A-W interface 

390
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391 As described in section 2.5, the early stages of protein diffusion to the A-W interface can be 

392 characterized by a lag time, i.e., the surface age at which surface tension had decreased to a value 

393 equal to 95% of its initial value. Figure 4 compares the lag times of 0.300% wprotein/v EW protein 

394 solution, 0.050% and 0.150% wprotein/v GH solutions and mixed GHs + EW protein (GH0.050EW0.250 

395 or GH0.150EW0.150) solutions. The 0.300% wprotein/v EW protein solution had a significantly (P < 0.05) 

396 higher lag time than any of the GH solutions at 0.050% wprotein/v, or any of the mixed GH + EW 

397 protein (GH0.050EW0.250) solutions. Also, there were no statistically significant (P > 0.05) differences 

398 between the lag times of the different GHs (0.050% wprotein/v) and the different mixed GH + EW 

399 protein (GH0.050EW0.250) solutions. Furthermore, no lag times could be recorded for any of the 

400 mixed GH + EW protein (GH0.150EW0.150) solutions, indicating that even at very low surface ages, 

401 protein had adsorbed at the A-W interface. The same was true for all GHs at 0.150% wprotein/v. 

402

403 After the lag phase, surface tension began to decrease, indicating protein adsorption and re-

404 arrangement at the interface. The absolute value of the decrease of surface tension as a function 

405 of the logarithm of surface age was defined as the |SST-t| value.  It is a measure of the rate and 

406 extent of this continuous adsorption and rearrangement of proteins in a given sample (Figure 5). 

407 These rates of adsorption at the A-W interface showed trends which were very similar to those 

408 of the rates of diffusion in Figure 5. |SST-t| values of EW protein solutions (0.300% wprotein/v) were 

409 significantly (P < 0.05) lower than those of any of the GH solutions (0.050% wprotein/v) and any of 

410 the mixed GH + EW protein (GH0.050EW0.250) solutions. The same was true when comparing |SST-t| 

411 of EW protein solutions (0.300% wprotein/v) with the mixed GH + EW protein solutions 
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412 (GH0.150EW0.150). In contrast, |SST-t| values of the GH and the GH + EW protein solutions were 

413 rather similar, although there were some minor but significant (P < 0.05) differences.

414

415 Thus, overall, the rates of diffusion and adsorption of EW proteins at the A-W interface were 

416 lower than those of GHs. This is in agreement with the much lower FC values of EW protein 

417 solutions than those of GH solutions (see section 3.1). Furthermore, both the rates of diffusion to 

418 and adsorption at the A-W interface of mixed GH + EW protein solutions were dominated by the 

419 presence of GHs. Partial substitution of EW proteins by GHs increased the rates of diffusion to 

420 and adsorption at the A-W interface to values similar to those of the pure GH solutions. All this is 

421 in agreement with the substantial higher FC of mixed GH + EW protein systems than of pure EW 

422 protein solutions (see section 3.1). These results suggest that in these early stages of diffusion to 

423 and adsorption of proteins to the interface, the interface composition is dominated by GH 

424 peptides rather than by EW proteins.

425

426 3.3 Surface dilatational elastic moduli

427

428 Figure 6 compares E� values of a 0.300% wprotein/v EW protein solution, 0.300% wprotein/v GH 

429 solutions and mixed GH + EW protein solutions (GH0.050EW0.250 or GH0.150EW0.150). E� values 

430 reported here for pure GH protein solutions are lower than those reported earlier by our group 

431 for similar samples (Wouters et al., 2016b; Wouters et al., 2017d) because of differences in 

432 filtration procedures prior to analysis. However, for both filtration methods, similar trends were 

433 observed. Most notably, Figure 6 shows that both DH 2 hydrolysates had significantly (P < 0.05) 
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434 higher E� values than both DH 6 hydrolysates , as was the case in earlier published work (Wouters 

435 et al., 2016b; Wouters et al., 2017d). E� of a 0.300% wprotein/v EW solution was significantly higher 

436 (P < 0.05) than E� of any of the GH solutions (0.300% wprotein/v) or any of the mixed GH + EW 

437 protein solutions. At the lowest degree of EW protein substitution, only T60.050EW0.250 had 

438 significantly (P < 0.05) higher E� than T60.300. All other GH + EW protein mixtures had similar or 

439 even lower E� values than the GH solutions. This suggests that, already at this relatively low degree 

440 of substitution, the overall strength of the protein films for the mixtures was dominated by the 

441 presence of GHs. As already mentioned, the exception was T60.050EW0.250, which had an E� value 

442 intermediate between those of EW0.300 and T60.300. At a higher degree of EW protein substitution, 

443 E� of none of the GH + EW protein mixtures differed significantly from those of their respective 

444 GH solutions. Furthermore, T20.150EW0.150 and P20.150EW0.150 had significantly higher E� than 

445 T60.150EW0.150 and P60.150EW0.150, which is in line with the higher E� of pure DH 2 than of DH 6 

446 hydrolysate films. This suggests that the interface at this point was again occupied by GH peptides 

447 rather than by EW proteins. 

448

449 The above results are in line with observations made in section 3.2. There, it was concluded that 

450 GH components dominate the diffusion to and (early stages of) adsorption at the A-W interface 

451 in GH + EW protein mixtures. However, in section 3.1, high FS values were recorded for all 

452 mixtures, from which it would be expected that EW proteins, which intrinsically have better FS 

453 than any of the GHs, dominate the interface at later stages after adsorption. The trends in E� 

454 values did not support this hypothesis. Thus, the higher FS values of the mixtures could not be 
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455 attributed to an increase in surface dilatational elastic moduli due to the presence of EW proteins 

456 at the interface.

457

458 3.4 Surface shear viscosity

459

460 As dilatational experiments did not provide an explanation for the high FS values of GH + EW 

461 protein mixtures, measurements were performed to assess how the surface shear viscosity was 

462 affected when GH and EW proteins co-existed in solution. Figure 7 shows the surface shear 

463 viscosity over the course of one hour during constant shearing of the interface for 0.300% 

464 wprotein/v EW protein solution, 0.300% wprotein/v GH solutions and mixed GH + EW protein 

465 (GH0.150EW0.150) solutions, as described in section 2.7.

466 The surface shear viscosity of the 0.300% wprotein/v EW protein solution increased gradually over 

467 the course of one hour during constant shearing. However, for all GH solutions (0.300% wprotein/v) 

468 and all mixed GH + EW protein solutions (GH0.150EW0.150) surface shear viscosities were below the 

469 limit of detection, which was 0.70 mNs/m for the torsion wire used. Thus, EW proteins at the A-

470 W interface formed strong protein films, illustrated by the relatively high surface dilatational 

471 moduli (see section 3.3) as well as high surface shear viscosity values. However, in mixed GH + 

472 EW protein systems, the hydrolysates, which provided no measurable surface shear viscosity on 

473 their own with the set-up used here, still seemed to dominate the interface.

474

475 3.5 Foam destabilization mechanisms

476
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477 The foaming characteristics of EW protein + GH mixtures (section 3.1) suggested that proteins 

478 from both sources were present at the A-W interface, as both FC and FS were relatively high, 

479 which was ascribed to the occurrence of GHs and EW proteins at the interface, respectively. 

480 However, it was pointed out in sections 3.2 to 3.4 that GHs probably dominate the diffusion to 

481 and adsorption at the A-W interface in the early stages as well as the composition of the protein 

482 film in later stages after adsorption. Foams are mainly destabilized by disproportionation and 

483 coalescence (Damodaran, 2005; Pugh, 1996). Disproportionation is driven by the difference in 

484 pressure in gas bubbles of different sizes. The difference in pressure between the outside and 

485 inside of a smaller gas bubble is larger than that of a larger gas bubble (Damodaran, 2005). This 

486 means that the solubility of gas in the smaller bubble is higher than that in the larger one, which 

487 results in gas diffusion from the former to the latter bubbles. Eventually, this coarsens and 

488 destabilizes the foam (Damodaran, 2005; Gandolfo and Rosano, 1997). Coalescence refers to the 

489 merging of two adjoining gas bubbles (Damodaran, 2005). In what follows, the separate 

490 contributions of these two phenomena in the destabilization of air bubbles in mixed GH + EW 

491 protein solutions are discussed in an attempt to clarify the contradictory results in terms of FS 

492 and A-W interfacial properties of the mixtures. 

493

494 Figure 8 shows the time needed for air bubbles of different initial sizes formed in solutions of 

495 0.300% wprotein/v of EW protein, 0.300% wprotein/v of T2, T6, P2 and P6, or in mixed GH + EW protein 

496 solutions (GH0.150EW0.150) to shrink to a size (< 10 µm) no longer detectable in the set-up used. Of 

497 course, the shrinkage time increased with initial bubble radius for all samples analyzed. Moreover, 

498 the evolution of bubble radius over time does not follow a linear course. Indeed, as also reported 
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499 in the paper first describing this method (Dickinson et al., 2002), larger bubbles shrink 

500 disproportionately more slowly than smaller bubbles. As a result, normalizing shrinkage times of 

501 air bubbles for differences in initial bubble radius is not possible and the plots shown in Figure 8 

502 are best suited to assess differences in the disproportionation of different samples. The left part 

503 of Figure 8 shows that bubbles formed in 0.300% wprotein/v EW protein solution generally needed 

504 more time to shrink than similarly sized bubbles in any of the GHs solutions at 0.300% wprotein/v. 

505 This observation is in line with the higher FS (see section 3.1) and surface dilatational moduli (see 

506 section 3.3) of EW protein than of GH solutions. Interestingly, the right hand side of Figure 8, 

507 which compares a 0.300% wprotein/v EW protein solution with mixed GH + EW protein 

508 (GH0.150EW0.150) solutions, shows a pattern which is very similar to the one on the left hand side. 

509 This suggests that the disproportionation of gas bubbles introduced in a mixed GH + EW protein 

510 solution is dominated by the GH constituents, rather than by the EW proteins. That FS readings 

511 of mixed GH + EW protein solutions were higher than those of GH solutions (see section 3.1) could 

512 thus not be attributed to an increased resistance to disproportionation.

513

514 These observations can be understood better by considering that proteins slow down  

515 disproportionation in two ways. First, by lowering surface tension, the difference in pressure 

516 between the inside and outside of the gas bubbles is reduced, thereby delaying the diffusion of 

517 gas through the liquid films. Second, the formation of a viscoelastic film around gas bubbles may 

518 prevent gas from easily diffusing into the liquid films between gas bubbles (Damodaran, 2005; 

519 Dickinson et al., 2002). Thus, both mechanisms depend directly on the protein layer adsorbed at 

520 the interface. As shown in sections 3.2 to 3.4, the interface in GH + EW protein mixtures is 
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521 dominated by GH constituents rather than by EW proteins. Therefore, it makes sense that the 

522 disproportionation of gas bubbles stabilized by GHs alone or by GH + EW protein mixtures is very 

523 similar. In contrast, coalescence, while also depending on the adsorbed protein layer and the 

524 viscoelastic film around gas bubbles, also depends on steric and electrostatic effects caused by 

525 proteins at the surface of gas bubbles (Damodaran, 2005).

526

527 Figure 9 compares the fraction of bubbles, formed in solutions of 0.300% wprotein/v of EW protein, 

528 0.300% wprotein/v of T2, T6, P2 and P6, or mixed GH + EW protein (GH0.150EW0.150) solutions, which 

529 coalesced after they had been subjected to the controlled pressure drop. First, it is to be noted  

530 that there were no notable differences in the overall initial bubble size distributions of the 

531 different samples (data not shown). Thus, none of the differences in bubble coalescence between 

532 different samples could be attributed to differences in their initial bubble size distributions. None 

533 of the bubbles formed in a 0.300% wprotein/v EW protein solution coalesced. In contrast, 11%, 22%, 

534 14% and 50% of the bubbles produced in 0.300% wprotein/v T2, T6, P2 and P6 solutions, 

535 respectively, coalesced upon pressure drop. The higher resistance to coalescence of air bubbles 

536 stabilized by EW proteins than of those stabilized by GHs is in line with the higher FS of the former. 

537 Furthermore, DH 2 hydrolysates had higher stability against coalescence than DH 6 hydrolysates, 

538 which is in agreement with the higher FS of the former. The fractions of coalesced bubbles in the 

539 mixed GH + EW protein solutions were 6%, 11%, 4% and 8% for T20.150EW0.150, T60.150EW0.150, 

540 P20.150EW0.150 and P60.150EW0.150, respectively. These values are intermediate between those of 

541 the pure EW protein solutions and the GH solutions at 0.300% wprotein/v. Thus, the resistance to 
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542 coalescence of air bubbles in the mixed GH + EW protein solutions was considerably higher than 

543 that of the pure GH solutions (0.300% wprotein/v). 

544

545 All this suggests that the higher FS of mixed GH + EW protein solutions compared to that of GH 

546 solutions alone can be attributed to an increased resistance to coalescence of air bubbles due to 

547 the EW proteins. However, results from sections 3.2 to 3.4 indicated that the A-W interface is 

548 dominated by adsorbed GH constituents, rather than by EW proteins, both in the earlier and later 

549 stages after creating the interface. An explanation of these observations may be that, even 

550 though EW proteins apparently do not easily displace adsorbed GHs from the A-W interface, they 

551 can interact with the adsorbed layer of GH constituents through hydrophobic and electrostatic 

552 interactions. By doing so, they would form an additional secondary protein layer below the A-W 

553 interface, which could reduce gas bubble coalescence. However, in such a mechanism, the gas 

554 permeability is apparently not affected, because the disproportionation in the mixed GH + EW 

555 protein solutions was very close to that of the pure GH solutions (Figure 8). Furthermore, 

556 interfaces stabilized by mixed GH + EW solutions did not have higher surface shear viscosity than 

557 GH stabilized interfaces (see Section 3.4), suggesting that steric or electrostatic effects, rather 

558 than an increased surface viscosity, are at the basis of the additional measure of FS provided by 

559 the EW proteins in the protein solutions containing both GH and EW.

560

561 4. CONCLUSIONS

562
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563 The impact of partial substitution of EW proteins by various GHs on the foaming and A-W 

564 interfacial properties of the mixtures was investigated. It was established that, in general, the GH 

565 constituents had the ability to form high amounts of foam and to diffuse to and adsorb at an A-

566 W interface rapidly, while EW proteins provided foams and bubbles with high stability once they 

567 have formed. They also formed strong viscoelastic protein films at the A-W interface.

568

569 Despite differences in FS between the GH solutions, there were no such differences when GHs 

570 were mixed with EW proteins. Thus, it did not matter which GH sample was used to replace part 

571 of the EW proteins. Replacing one sixth of EW proteins by GHs drastically increased FC. The 

572 resulting systems also had high FS. When half of the EW proteins were replaced by GHs, a similar 

573 trend was observed. This suggests that both protein types were present at the interface and 

574 contributed to foam formation and stabilization. The separate contributions of bubble 

575 disproportionation and coalescence to bubble destabilization were assessed. Bubbles formed in 

576 GH + EW protein solutions shrank at rates comparable to those in GH solutions alone. However, 

577 the former bubbles were more resistant to coalescence than the latter. Thus, the improved FS of 

578 GH + EW protein solutions seemed to originate from an elevated resistance to coalescence rather 

579 than to disproportionation.

580

581 Maximum bubble pressure measurements revealed that the rates of diffusion to and adsorption 

582 at the A-W interface in the mixtures were very similar to those of the GHs. Thus, GHs dominated 

583 the early stages of protein adsorption at the A-W interface. Surface dilatational elasticity and 

584 surface shear viscosity measurements showed that, in the later stages of adsorption, the A-W 
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585 interface was still dominated by the presence of GHs. Thus, GHs reached the interface more 

586 rapidly, adsorbed at it, and apparently could not easily be displaced by the EW proteins. 

587 Nonetheless, the presence of EW proteins in the mixed GH + EW protein solutions led to higher 

588 FS values. We hypothesize that this is caused by formation of a secondary protein layer of EW 

589 proteins below the A-W interface. This layer, which is probably sustained by electrostatic and 

590 hydrophobic interactions with the adsorbed layer of GHs, seemingly provides increased resistance 

591 to bubble coalescence, probably by electrostatically or sterically hindering gas bubbles from 

592 approaching each other. Future research to further study such mixed protein films and the 

593 interactions leading to their formation would shed light on this hypothesis.

594
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FIGURE CAPTIONS

Figure 1: Illustration of a typical bubble disproportionation experiment. Air bubbles are trapped 

under a planar air-water (A-W) interface and shrink over time until they are no longer detectable 

in the used set-up (< 10 µm). Their bubble radius is plotted over time to obtain a shrinkage rate 

curve.

Figure 2: Illustration of a typical bubble coalescence experiment. Air bubbles are trapped under a 

planar air-water (A-W) interface (left figure), subjected to a controlled pressure drop, during 

which the bubbles expand and some of them coalesce (middle figure), and finally returned to 

their original state. The fraction of bubbles which coalesced in the process is a measure for the 

ability of the protein film to stabilize air bubbles against coalescence.

Figure 3: Foam volume over time of whipped solutions of tryptic (T) and peptic (P) gluten 

hydrolysates (GHs) with degrees of hydrolysis (DH) of 2 and 6 (0.050% or 0.150% wprotein/v), egg 

white (EW) proteins (0.300% wprotein/v) and mixed solutions consisting of 0.050% gluten 

hydrolysate + 0.250% EW protein or of 0.150% GH + 0.150% EW protein.

Figure 4: Lag times, as a measure for early stage diffusion of proteins to the interface, of solutions 

of tryptic (T) and peptic (P) gluten hydrolysates (GHs) with degrees of hydrolysis (DH) of 2 and 6 

(0.050% or 0.150% wprotein/v), egg white (EW) proteins (0.300% wprotein/v) and mixed solutions 

consisting of 0.050% wprotein/v GH + 0.250% wprotein/v EW protein or of 0.150% wprotein/v GH + 

0.150% wprotein/v EW protein. Capital letters represent significant (P < 0.05) differences between 
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an EW protein solution, a given GH solution and a solution containing the mixture of both. 

Lowercase letters represent significant differences between the different GHs or GH + EW protein 

mixtures.

Figure 5: |SST-t| values, as a measure for the continuous early stage adsorption and rearrangement 

of proteins at the interface, of solutions of tryptic (T) and peptic (P) gluten hydrolysates (GHs) 

with degrees of hydrolysis (DH) of 2 and 6 (0.050% or 0.150% wprotein/v), egg white proteins (EW) 

(0.300% wprotein/v) and mixed solutions consisting of 0.050% wprotein/v GH + 0.250% wprotein/v EW 

protein or of 0.150% wprotein/v GH + 0.150% wprotein/v EW protein. Capital letters represent 

significant (P < 0.05) differences between an EW protein solution, a given GH solution and a 

solution containing the mixture of both. Lowercase letters represent significant differences 

between the different GHs or GH + EW protein mixtures.

Figure 6: Surface dilatational elastic moduli E�, as a measure for the coherence and elasticity of 

adsorbed protein films at the interface, of solutions of tryptic (T) and peptic (P) gluten 

hydrolysates (GHs) with degrees of hydrolysis (DH) of 2 and 6 (0.300% wprotein/v), egg white (EW) 

proteins (0.300% wprotein/v) and mixed solutions consisting of 0.050% wprotein/v GH + 0.250% 

wprotein/v EW protein or of 0.150% wprotein/v GH + 0.150% wprotein/v EW protein. Capital letters 

represent significant (P < 0.05) differences between an EW protein solution, a given GH solution 

and a solution containing the mixture of both. Lowercase letters represent significant differences 

between the different GHs or GH + EW protein mixtures.
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Figure 7: Surface shear viscosity of a 0.300% wprotein/v egg white (EW) protein solution, solutions 

of 0.300% wprotein/v tryptic and peptic gluten hydrolysates (GHs) with degrees of hydrolysis (DH) 

of 2 and 6, and mixed solutions consisting of  0.150% wprotein/v GH +  0.150% wprotein/v EW protein.

Figure 8: Shrinkage time of air bubbles, stabilized by a 0.300% wprotein/v egg white (EW) protein 

solution, 0.300% wprotein/v tryptic (T) and peptic (P) gluten hydrolysates (GHs) with degrees of 

hydrolysis (DH) of 2 and 6 and mixed solutions consisting of 0.150% wprotein/v GH + 0.150% 

wprotein/v EW protein as a function of their initial bubble radius.

Figure 9: Fraction of air bubbles, stabilized by a 0.300% wprotein/v egg white (EW) protein solution, 

0.300% wprotein/v tryptic (T) and peptic (P) gluten hydrolysates (GHs) with degrees of hydrolysis 

(DH) of 2 and 6 and mixed solutions consisting of 0.150% wprotein/v GH + 0.150% wprotein/v EW 

protein, that coalesced after a controlled pressure drop. n indicates the number of air bubbles 

assessed to calculate the fraction of coalesced bubbles.
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