2,908 research outputs found

    Using a Microwave Sensor as an Online Indicator of Neurological Impairment during Surgical Procedures

    Get PDF
    Lactate is known to be an indicator of neurological impairment during aortic aneurysm surgery. It is suggested that analysis of cerebrospinal fluid (CSF) removed during such surgery could provide useful information in this regard. Medical professionals find the prospect of online detection of such analytes exciting, as current practice is time consuming and leads to multiple invasive procedures. Advancing from the current laboratory based analysis techniques to online methods could provide the basis for improved treatment regimes, better quality of care, and enhanced resource efficiency within hospitals. Accordingly, this article considers the use of a low power microwave sensor to detect varying lactate concentrations. Microwave sensors provide a rapid non-invasive method of material analysis, which is robust, cost-effective, and has huge potential for a wide range of biomedical applications

    Real-Time Monitoring of Bodily Fluids Using a Novel Electromagnetic Wave Sensor

    Get PDF
    The use of a novel low power electromagnetic sensor for real-time detection of lactate in cerebrospinal fluid (CSF) is investigated. CSF holds key indicators relating to a patient’s future health. A multipurpose sensor platform is currently being developed with the capability to detect the concentration of materials in volumes =1 ml. This paper presents results from a microwave cavity resonator designed and created for this purpose, using varying concentrations of lactate in water. The work demonstrates the feasibility of monitoring bodily fluids in real-time. Such advancements are essential for improved and cost-effective delivery of healthcare services to patients

    Non Invasive Microwave Sensor for the Detection of Lactic Acid in Cerebrospinal Fluid (CSF)

    Get PDF
    This research involves the use of a low power microwave sensor for analysis of lactic acid in cerebrospinal fluid (CSF), an indicator of neurological impairment during aortic aneurysm surgery which could provide the basis for improved treatment regimes and better quality of care with more efficient use of resources. This paper presents initial work using standard lactate curves in water followed by lactate in “synthetic CSF”. A multi-modal spectral signature has been defined for lactate, forming the basis for subsequent development of microwave sensor platform that is able to detect concentrations of lactic acid in CSF of volumes less than 1m

    Sex-biased parental care and sexual size dimorphism in a provisioning arthropod

    Get PDF
    The diverse selection pressures driving the evolution of sexual size dimorphism (SSD) have long been debated. While the balance between fecundity selection and sexual selection has received much attention, explanations based on sex-specific ecology have proven harder to test. In ectotherms, females are typically larger than males, and this is frequently thought to be because size constrains female fecundity more than it constrains male mating success. However, SSD could additionally reflect maternal care strategies. Under this hypothesis, females are relatively larger where reproduction requires greater maximum maternal effort – for example where mothers transport heavy provisions to nests. To test this hypothesis we focussed on digger wasps (Hymenoptera: Ammophilini), a relatively homogeneous group in which only females provision offspring. In some species, a single large prey item, up to 10 times the mother’s weight, must be carried to each burrow on foot; other species provide many small prey, each flown individually to the nest. We found more pronounced female-biased SSD in species where females carry single, heavy prey. More generally, SSD was negatively correlated with numbers of prey provided per offspring. Females provisioning multiple small items had longer wings and thoraxes, probably because smaller prey are carried in flight. Despite much theorising, few empirical studies have tested how sex-biased parental care can affect SSD. Our study reveals that such costs can be associated with the evolution of dimorphism, and this should be investigated in other clades where parental care costs differ between sexes and species

    Hendra Virus Infection Dynamics in Australian Fruit Bats

    Get PDF
    Hendra virus is a recently emerged zoonotic agent in Australia. Since first described in 1994, the virus has spilled from its wildlife reservoir (pteropid fruit bats, or ‘flying foxes’) on multiple occasions causing equine and human fatalities. We undertook a three-year longitudinal study to detect virus in the urine of free-living flying foxes (a putative route of excretion) to investigate Hendra virus infection dynamics. Pooled urine samples collected off plastic sheets placed beneath roosting flying foxes were screened for Hendra virus genome by quantitative RT-PCR, using a set of primers and probe derived from the matrix protein gene. A total of 1672 pooled urine samples from 67 sampling events was collected and tested between 1 July 2008 and 30 June 2011, with 25% of sampling events and 2.5% of urine samples yielding detections. The proportion of positive samples was statistically associated with year and location. The findings indicate that Hendra virus excretion occurs periodically rather than continuously, and in geographically disparate flying fox populations in the state of Queensland. The lack of any detection in the Northern Territory suggests prevalence may vary across the range of flying foxes in Australia. Finally, our findings suggest that flying foxes can excrete virus at any time of year, and that the apparent seasonal clustering of Hendra virus incidents in horses and associated humans (70% have occurred June to October) reflects factors other than the presence of virus. Identification of these factors will strengthen risk minimization strategies for horses and ultimately humans

    Spatial and temporal CCN variations in convection-permitting aerosol microphysics simulations in an idealised marine tropical domain

    Get PDF
    A convection-permitting limited area model with periodic lateral boundary conditions and prognostic aerosol microphysics is applied to investigate how concentrations of cloud condensation nuclei (CCN) in the marine boundary layer are affected by high-resolution dynamical and thermodynamic fields. The high-resolution aerosol microphysics– dynamics model, which resolves differential particle growth and aerosol composition across the particle size range, is applied to a domain designed to match approximately a single grid square of a climate model. We find that, during strongly convective conditions with high wind-speed conditions, CCN concentrations vary by more than a factor of 8 across the domain (5–95th percentile range), and a factor of ∼ 3 at more moderate wind speed. One reason for these large subclimate-grid-scale variations in CCN is that emissions of sea salt and dimethyl sulfide (DMS) are much higher when spatial and temporal wind-speed fluctuations become resolved at this convection-permitting resolution (making peak wind speeds higher). By analysing how the model evolves during spin-up, we gain new insight into the way primary sea salt and secondary sulfate particles contribute to the overall CCN variance in these realistic conditions, and find a marked difference in the variability of super-micron and sub-micron CCN. Whereas the super-micron CCN are highly variable, dominated by strongly fluctuating sea spray emitted, the submicron CCN tend to be steadier, mainly produced on longer timescales following growth after new particle formation in the free troposphere, with fluctuations inherently buffered by the fact that coagulation is faster at higher particle concentrations. We also find that sub-micron CCN are less variable in particle size, the accumulation-mode mean size varying by ∼ 20 % (0.101 to 0.123 µm diameter) compared to ∼ 35 % (0.75 to 1.10 µm diameter) for coarse-mode particles at this resolution. We explore how the CCN variability changes in the vertical and at different points in the spin-up, showing how CCN concentrations are introduced both by the emissions close to the surface and at higher altitudes during strong wind-speed conditions associated to the intense convective period. We also explore how the non-linear variation of seasalt emissions with wind speed propagates into variations in sea-salt mass mixing ratio and CCN concentrations, finding less variation in the latter two quantities due to the longer transport timescales inherent with finer CCN, which sediment more slowly. The complex mix of sources and diverse community of processes involved makes sub-grid parameterisation of CCN variations difficult. However, the results presented here illustrate the limitations of predictions with largescale models and the high-resolution aerosol microphysics– dynamics modelling system shows promise for future studies where the aerosol variations will propagate through to modified cloud microphysical evolution

    Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management

    Get PDF
    This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses

    Evidence of Endemic Hendra Virus Infection in Flying-Foxes (Pteropus conspicillatus)—Implications for Disease Risk Management

    Get PDF
    This study investigated the seroepidemiology of Hendra virus in a spectacled flying-fox (Pteropus conspicillatus) population in northern Australia, near the location of an equine and associated human Hendra virus infection in late 2004. The pattern of infection in the population was investigated using a serial cross-sectional serological study over a 25-month period, with blood sampled from 521 individuals over six sampling sessions. Antibody titres to the virus were determined by virus neutralisation test. In contrast to the expected episodic infection pattern, we observed that seroprevalence gradually increased over the two years suggesting infection was endemic in the population over the study period. Our results suggested age, pregnancy and lactation were significant risk factors for a detectable neutralizing antibody response. Antibody titres were significantly higher in females than males, with the highest titres occurring in pregnant animals. Temporal variation in antibody titres suggests that herd immunity to the virus may wax and wane on a seasonal basis. These findings support an endemic infection pattern of henipaviruses in bat populations suggesting their infection dynamics may differ significantly from the acute, self limiting episodic pattern observed with related viruses (e.g. measles virus, phocine distemper virus, rinderpest virus) hence requiring a much smaller critical host population size to sustain the virus. These findings help inform predictive modelling of henipavirus infection in bat populations, and indicate that the life cycle of the reservoir species should be taken into account when developing risk management strategies for henipaviruses

    Network adaptation improves temporal representation of naturalistic stimuli in drosophila eye: II Mechanisms

    Get PDF
    Retinal networks must adapt constantly to best present the ever changing visual world to the brain. Here we test the hypothesis that adaptation is a result of different mechanisms at several synaptic connections within the network. In a companion paper (Part I), we showed that adaptation in the photoreceptors (R1-R6) and large monopolar cells (LMC) of the Drosophila eye improves sensitivity to under-represented signals in seconds by enhancing both the amplitude and frequency distribution of LMCs' voltage responses to repeated naturalistic contrast series. In this paper, we show that such adaptation needs both the light-mediated conductance and feedback-mediated synaptic conductance. A faulty feedforward pathway in histamine receptor mutant flies speeds up the LMC output, mimicking extreme light adaptation. A faulty feedback pathway from L2 LMCs to photoreceptors slows down the LMC output, mimicking dark adaptation. These results underline the importance of network adaptation for efficient coding, and as a mechanism for selectively regulating the size and speed of signals in neurons. We suggest that concert action of many different mechanisms and neural connections are responsible for adaptation to visual stimuli. Further, our results demonstrate the need for detailed circuit reconstructions like that of the Drosophila lamina, to understand how networks process information
    corecore