1,076 research outputs found

    A Canonical Form For The Reduction of Linear Scalar Systems

    Get PDF
    Consideration is given to the problem of the reduction of order of a scalar system S (A,B,C) described by a transfer function g (s). On the assumption that the reduced order model is to be used for feedback control systems design, a canonical form is derived equivalent to a system decomposition related to the asymptotes, intercepts and finite zeros of the system root-locus. A model reduction procedure, based on the canonical form, is suggested and shown to be capable of providing a good approximation to both the dominant pole and dominant zeros of g (s) and to make possible the matching of the desired number of high and low frequency moments. The canonical form can also be used to provide an estimate of a suitable reduced model order. Two examples are described

    The effect of small-scale topography on patterns of endemism within islands

    Get PDF
    Topography influences evolutionary and ecological processes by isolating populations and by enhancing habitat diversity. While the effects of large-scale topography on patterns of species richness and endemism are increasingly well documented, the direct effect of local topography on endemism is less understood. This study compares different aspects of topographic isolation, namely the isolating effect of deep barrancos (ravines) and the effect of increasing isolation with elevation in influencing patterns of plant endemism within a topographically diverse oceanic island (La Palma, Canary Islands, Spain). We collected plant presence–absence data from 75 plots in 8 barrancos on the northern coast of La Palma, spanning an elevation gradient from 95 to 674m a.s.l. Using mixed-effects models, we assessed the effect of barranco depth and elevation on the percentage of single-island endemics, multi-island endemics and archipelago endemics. We found that percent endemism was not significantly correlated with barranco depth, and correlated negatively with elevation within barrancos (rather than the expected positive relationship). The topographic barriers associated with the deep island barrancos thus appear insufficient to drive speciation through isolation in oceanic island plants. The decrease in endemism with elevation contradicts findings by previous broader-scale studies and it may reflect local influences, such as high habitat heterogeneity at low elevations

    Co-occurrence frequency in vegetation patches decreases towards the harsh edge along an arid volcanic elevational gradient

    Get PDF
    Positive plant-plant interactions are thought to drive vegetation patterns in harsh environments, such as semi-arid areas. According to the stress-gradient hypothesis (SGH), the role of positive interactions between species (facilitation) is expected to increase with harshness, predicting associated variation in species composition along environmental gradients. However, the relation between stress and facilitation along environmental gradients is debated. Furthermore, differentiating facilitative interactions from other underlying mechanisms, such as microtopographic heterogeneity, is not trivial. We analysed the spatial cooccurrence relationships of vascular plant species that form patchy vegetation in arid lapilli fields (tephra) from recent volcanic eruptions on La Palma, Canary Islands. We assume a harshness gradient negatively correlated with elevation because of more arid conditions at lower elevations where water availability is considered the most limiting resource. Based on the SGH we expect a greater degree of co-occurrence at lower elevations, as an outcome of facilitation is plants co-occurring in the same patch. We tested this at both the species and the individual plant level. We analysed the species composition of 1277 shrubby vegetation patches at 64 different sampling points, ranging from the coast to around 700 m a.s.l. Patch morphology and microtopographic heterogeneity variables were also measured, to account for their potential effects on the species composition of patches. We used generalized linear models and generalized mixed-effects models to analyse species richness, number of individuals in patches and percentage of patches with positive co-occurrences, and a pairwise co-occurrence analysis combined with a graphical network analysis to reveal positive links between 13 of the species. We found that the percentage of patches with positive co-occurrences increased at higher elevations, in contrast to the predictions of the SGH, but in accordance with a refined stress-gradient hypothesis for arid sites, in which characteristics of the interacting species are incorporated

    Geodiversity and biodiversity on a volcanic island: The role of scattered phonolites for plant diversity and performance

    Get PDF
    Oceanic islands are cradles of endemism, contributing substantially to global biodiversity. A similarity in magmatic origin translates into high global comparability of substrates of volcanic islands on the oceanic crust with, however, slightly chemically or physically differentiated petrography in some places. Phonolites are examples of rare localities with intermediate chemical characteristics between felsic and mafic and with diverse textures. They contribute to habitat heterogeneity and offer specific growth conditions in a significantly different matrix of basaltic substrates. The explicit contribution of geodiversity to island biodiversity has been little studied, despite growing evidence of its importance on continents. On the island of La Palma, Canary Islands, isolated phonolitic rocks are conspicuous due to their light colour and specific shape. Although these outcrops only cover small areas, their unique form and composition increase within-island geodiversity. To investigate how this affects biodiversity on La Palma, we sampled all vascular plant species in 120 plots on four sets of paired sites in order to test if plant diversity and performance is enhanced on phonolitic rocks compared to basaltic rocks. We recorded species number and abundance as well as individual plant height and diameter as proxies for aboveground resource allocation and tested for differences in vegetation cover and species composition between the bedrock types. We found higher species richness and abundance on phonolites than neighbouring basaltic substrates, and individuals of the same species were larger (in height and diameter) on phonolites compared to neighbouring basalt. An endemic woody species with two distinct varieties even appears almost exclusively on the small surfaces of phonolitic rock. Despite extremely limited spatial extent, phonolitic rocks can play an important role in plant biodiversity on islands

    A grid-based map for the biogeographical regions of Europe

    Get PDF
    © Pensoft Publishers. Background Biogeographical units are widely adopted in ecological research and nature conservation management, even though biogeographical regionalisation is still under scientific debate. The European Environment Agency provided an official map of the European Biogeographical Regions (EBRs), which contains the official boundaries used in the Habitats and Birds Directives. However, these boundaries bisect cells in the official EU 10 km x 10 km grid used for many purposes, including reporting species and habitat data, meaning that 6881 cells overlap two or more regions. Therefore, superimposing the EBRs vector map over the grid creates ambiguities in associating some cells with European Biogeographical Regions. New information To provide an operational tool to unambiguously define the boundaries of the eleven European Biogeographical Regions, we provide a specifically developed raster map of Grid-Based European Biogeographical Regions (GB-EBRs). In this new map, the borders of the EBRs are reshaped to coherently match the standard European 10 km x 10 km grid imposed for reporting tasks by Article 17 of the Habitats Directive and used for many other datasets. We assign each cell to the EBR with the largest area within the cell

    The Proton Spin and Flavor Structure in the Chiral Quark Model

    Full text link
    After a pedagogical review of the simple constituent quark model and deep inelastic sum rules, we describe how a quark sea as produced by the emission of internal Goldstone bosons by the valence quarks can account for the observed features of proton spin and flavor structures. Some issues concerning the strange quark content of the nucleon are also discussed.Comment: 59 pages with table of contents, Lecture delivered at the Schladming Winter School (March 1997), to be published by Springer-Verlag under the title "Computing Particle Properties" (eds. C. B. Lang and H. Gausterer

    Last Call for RHIC Predictions

    Get PDF
    This paper contains the individual contributions of all speakers of the session on 'Last Call for RHIC Predictions' at Quark Matter 99, and a summary by the convenor.Comment: 56 pages, psfig, epsf, epsfig, graphicx style files required, Proceedings of the XIV Int. Conf. on Nucleus-Nucleus Collisions, Quark Matter 99, Torino, Italy, May 10 - 15, 1999. Typographical mistakes corrected and figure numbers change

    The First Magnetic Fields

    Full text link
    We review current ideas on the origin of galactic and extragalactic magnetic fields. We begin by summarizing observations of magnetic fields at cosmological redshifts and on cosmological scales. These observations translate into constraints on the strength and scale magnetic fields must have during the early stages of galaxy formation in order to seed the galactic dynamo. We examine mechanisms for the generation of magnetic fields that operate prior during inflation and during subsequent phase transitions such as electroweak symmetry breaking and the quark-hadron phase transition. The implications of strong primordial magnetic fields for the reionization epoch as well as the first generation of stars is discussed in detail. The exotic, early-Universe mechanisms are contrasted with astrophysical processes that generate fields after recombination. For example, a Biermann-type battery can operate in a proto-galaxy during the early stages of structure formation. Moreover, magnetic fields in either an early generation of stars or active galactic nuclei can be dispersed into the intergalactic medium.Comment: Accepted for publication in Space Science Reviews. Pdf can be also downloaded from http://canopus.cnu.ac.kr/ryu/cosmic-mag1.pd

    Climatic and biogeographical drivers of functional diversity in the flora of the Canary Islands

    Get PDF
    Aim: Functional traits can help us to elucidate biogeographical and ecological processes driving assemblage structure. We analysed the functional diversity of plant species of different evolutionary origins across an island archipelago, along environmental gradients and across geological age, to assess functional aspects of island biogeographical theory. Location: Canary Islands, Spain. Major taxa studied: Spermatophytes. Time period: Present day. Methods: We collected data for four traits (plant height, leaf length, flower length and fruit length) associated with resource acquisition, competitive ability, reproduction and dispersal ability of 893 endemic, non-endemic native and alien plant species (c.43% of the Canary Island flora) from the literature. Linking these traits to species occurrences and composition across a 500m×500m grid, we calculated functional diversity for endemic, non-endemic native and alien assemblages using multidimensional functional hypervolumes and related the resulting patterns to climatic (humidity) and island biogeographical (geographical isolation, topographic complexity and geological age) gradients. Results: Trait space of endemic and non-endemic native species overlapped considerably, and alien species added novel trait combinations, expanding the overall functional space of the Canary Islands. We found that functional diversity of endemic plant assemblages was highest in geographically isolated and humid grid cells. Functional diversity of non-endemic native assemblages was highest in less isolated and humid grid cells. In contrast, functional diversity of alien assemblages was highest in arid ecosystems. Topographic complexity and geological age had only a subordinate effect on functional diversity across floristic groups. Main conclusions: We found that endemic and non-endemic native island species possess similar traits, whereas alien species tend to expand functional space in ecosystems where they have been introduced. The spatial distribution of the functional diversity of floristic groups is very distinct across environmental gradients, indicating that species assemblages of different evolutionary origins thrive functionally in dissimilar habitats
    corecore