452 research outputs found
Pelosi, Hebe Carmen. Argentinos en Francia. Franceses en Argentina, una historia colectiva. Prólogo de Paúl Dijoud. Buenos Aires, Argentina, 1999, 527p.
Fil: Ferrazzini de Otero, Verónica
Imaging the dynamics of magma propagation using radiated seismic intensity.
International audienceAt shallow depth beneath the Earth's surface, magma propagates through strongly heterogeneous volcanic material. Inversion of buoyancy and/or solidification have strong impacts on the dynamics of propagation without any change of magma supply. In this paper, we study the spatial and time evolution of magma intrusions using induced seismicity. We propose a new method based on ratio analysis of estimates of radiated seismic intensities recorded at different stations during seismic swarms. By applying this method to the January 2010 Piton de la Fournaise volcano eruption, we image complex dike propagation dynamics which strongly differ from a model of constant velocity dike propagation. We provide a new method to image in real time the dynamics of dike propagation and to infer the position of eruptive fissures
Basaltic calderas: Collapse dynamics, edifice deformation, and variations of magma withdrawal
International audienceThe incremental caldera collapses of Fernandina (1968), Miyakejima (2000), and Piton de la Fournaise (2007) are analyzed in order to understand the collapse dynamics in basaltic setting and the associated edifice deformation. For each caldera, the collapse dynamics is assessed through the evolution of the (1) time interval T between two successive collapse increments, (2) amount of vertical displacement during each collapse increment, and (3) magma outflow rate during the whole collapse caldera process. We show from the evolution of T that Piton de la Fournaise and Fernandina were characterized by a similar collapse dynamics, despite large differences in the caldera geometry and the duration of the whole collapse caldera process. This evolution significantly differs from that of Miyakejima where T strongly fluctuated throughout the whole collapse process. Quantification of the piston vertical displacements enables us to determine the magma outflow rates between each collapse increment. Displacement data (tiltmeter and/or GPS) for Piton de la Fournaise and Miyakejima are used to constrain the edifice overall deformation and the edifice deformation rates. These data reveal that both volcanoes experienced edifice inflation once the piston collapsed into the magma chamber. Such a deformation, which lasts during the first collapse increments only, is interpreted as the result of larger volume of piston intruded in the magma chamber than magma withdrawn before each collapse increment. Once the effect of the collapsing rock column vanishes, edifice deflates. We also determine for each caldera the critical amount of magma evacuated before collapse initiation and compare it to analog models. The significant differences between models and nature are explained by the occurrence of preexisting weak zones in nature, i.e., the ring faults, that are not taken into account in analog models. Finally, we show that T at Piton de la Fournaise and Fernandina was equally controlled by the frictional resistance along the ring faults and the magma outflow rate. In addition to these two parameters, the collapse dynamics of Miyakejima was also influenced by variations of the magma bulk modulus, which changed after the influx of deep gas-rich magma into the collapse-related magma chamber. Altogether, our results show that the dynamics of caldera collapse in basaltic volcanoes proceeds in two phases: Phase 1, starting with the first collapse, is characterized by the largest collapse amplitude, an incremental edifice inflation, and a step-by-step increase of the rate of magma outflow. Phase 2 shows a rapid decrease of the magma discharge rate to a low level concomitant with the continuous edifice deflation. If deep magma is injected into the magma chamber, as at Miyakejima, an additional phase occurs (phase 3)
Monitoring volcanoes using seismic noise correlations Surveillance des volcans à partir du bruit de fond sismique
International audienceIn this article, we summarize some recent results of measurements of temporal changes of active volcanoes using seismic noise cross-correlations. We first present a novel approach to estimate volcano interior temporal seismic velocity changes. The proposed method allows to measure very small velocity changes (≈ 0.1%) with a time resolution as small as one day. The application of that method to Piton de la Fournaise Volcano (La Réunion Island) shows velocity decreases preceding eruptions. Moreover, velocity changes from noise cross-correlations over 10 years allow to detect transient velocity changes that could be due to long-lasting intrusions of magma without eruptive activity or to pressure buildup associated to the replenishing of the magma reservoir. We also present preliminary results of noise cross-correlation waveform perturbation associated with the occurrence of dike injection and volcanic eruption. We show that such an analysis leads us to locate the areas of dike injection and eruptive fissures at Piton de la Fournaise Volcano. These recent results suggest that monitoring volcanoes using seismic noise correlations should improve our ability to forecast eruptions, their intensity and thus potential environmental impact
Dynamics of the 2007 Eruptions of Piton de la Fournaise and the Related Caldera Collapse from a Single Very Broad-band Seismic Station
International audienceSeismic records from the RER very broad-band seismic station (La Réunion Island) belonging to the GEOSCOPE network are investigated to understand the eruptive succession (February to May) of Piton de la Fournaise and the caldera collapse episode of April 2007. Data first indicate that the short-lived, small volume, summit eruption of February 18 occurred during a phase of continuous inflation initiated in January 2007. Inflation decelerated around 2 weeks before a second short-lived small volume eruption on March 30-31 on the SE flank, almost simultaneous with a sudden, large deflation of the edifice. Deflation rate, which had stabilized at a relatively low level, increased anew on April 1 while no magma was emitted, followed on April 2 by a more distant and one of the most voluminous eruptions of the last two centuries at La Réunion Island. The RER station shows that very long period (VLP) and ultra long period (ULP) events developed during this period. Seven ULP events preceded the caldera collapse and 48 ones occurred during the caldera collapse over 9 days, most of which during the first 30 hours. A thorough examination of the seismic signals corrected for tide effects shows that each collapse event was coeval with VLP and ULP signals. Each individual collapse showed similar ULP and VLP signals characterized by periods of ∼ 500 s and ∼ 7 s, respectively. The back-azimuth of most ULP signals related to the caldera collapse points clearly toward the Dolomieu caldera. The strikingly constant duration of the VLP signals (around 20 s) related to the collapse events and their occurrence before the collapse initiation suggest a physical control of the volcanic edifice. Waveforms and spectrograms of the various caldera collapse events show very homogeneous patterns, suggesting a similar and repeating volcano-tectonic process for the formation of the VLP signals events. Although tilt may be responsible of part of the ULP signals observed during the collapse events, we show that it cannot explain most of the records. The ULP signals occurring during the collapse and also recorded by the OVPF GNSS (Global Navigation Satellite System) permanent network likely correspond to relaxation of the volcanic edifice. This analysis allows us to propose a scenario that may explain each successive collapse event as starting with a short-period event induced by the rock failure, followed by a VLP signal induced by dip-slip motion on the caldera ring fault, and ending with a ULP signal likely related to a relaxation process of the edifice
Genetic variability and population divergence in the rare Fritillaria tubiformis subsp. moggridgei Rix (Liliaceae) as revealed by RAPD analysis
Fritillaria tubiformis subsp. moggridgei Rix. is a rare alpine geophyte with shiny yellow flowers. This plant is sporadically distributed across the southwestern Alps where it is biogeographically close to F. tubiformis var. burnatii Planch. The latter has dark purple flowers and ranges in the majority of the Western and Central Alps. In order to develop appropriate strategies of conservation, a RAPD based analysis was conducted to study the genetic status of these taxa and the distribution of genetic variability of the subspecies by sampling seven populations distributed across the subspecies' range. Four populations of var. burnatii were chosen within this range and included in the genetic analysis. Some 264 individuals were analysed and 201 polymorphic loci were scored. Genetic diversity scored in the subspecies was in line with expectations for endemic species (He = 0.194). F. tubiformis var. burnatii showed lower intraspecific diversity (He = 0.173), notwithstanding a wider range than the subspecies. Most of the total phenotypic variation (about 83%) was allocated within populations, and significant lower proportions between taxa (6.45%) and between populations of the same taxon (10.64%). Moreover, PCoA analysis and Bayesian clustering separated populations into two genetically differentiated groups corresponding with the subspecific taxa. However, three populations ascribed to the subsp. moggridgei repeatedly showed genetic admixture with var. burnatii populations. Our findings suggest that: i) although the different flower colour, the two taxa are genetically very similar and share a consistent part of their gene pool, ii) the majority of genetic variability is allocated within populations rather than among them, iii) a representative amount of genetic diversity can be preserved by sampling from a restricted number of populations. The efficacy of RAPD markers in analysing genetic variation, and the contribution of the results to the preservation of biodiversity of the species, are discussed
Toward Forecasting Volcanic Eruptions using Seismic Noise
During inter-eruption periods, magma pressurization yields subtle changes of
the elastic properties of volcanic edifices. We use the reproducibility
properties of the ambient seismic noise recorded on the Piton de la Fournaise
volcano to measure relative seismic velocity variations of less than 0.1 % with
a temporal resolution of one day. Our results show that five studied volcanic
eruptions were preceded by clearly detectable seismic velocity decreases within
the zone of magma injection. These precursors reflect the edifice dilatation
induced by magma pressurization and can be useful indicators to improve the
forecasting of volcanic eruptions.Comment: Supplementary information:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguier_SI.pdf Supplementary
video:
http://www-lgit.obs.ujf-grenoble.fr/~fbrengui/brenguierMovieVolcano.av
La Revista Ideas (1903-1905)
In this article the author analyses the magazine Ideas. This is a literary publication edited in Buenos Aires, Argentina, between 1903 and 1905 and directed by Manuel Gálvez. Revista Ideas is regarded today as the principal organ of expression of a young generation of writers, known as “Generación del 900” or “Generation of Ideas”. In this pages the author studies the contents of the publication and the group of people who wrote in it. Trough them you will be able to discover the intense cultural life that reigned in Argentina’s capital city during the fi rst years of 1900, the ways this generation came together and the interests and ideals of this young men and women than years later would become signifi cant political and intellectual fi gures in the history of their country.En este artículo el autor analiza la revista Ideas, ésta es una publicación literaria editada en Buenos Aires, Argentina, entre 1903 y 1905 y dirigida por Manuel Gálvez. La Revista Ideas es considerada hoy como el principal órgano de expresión de una joven generación de escritores, conocida como “Generación del 900” o “Generación de Ideas”.
En estas páginas el autor estudia el contenido de la publicación y el grupo de personas que escribieron en ella. A través de ellos podrás descubrir la intensa vida cultural que reinó en la capital argentina durante los primeros años de 1900, las formas en que se congregó esta generación y los intereses e ideales de estos jóvenes que años después cobrarían significatividad; figuras políticas e intelectuales de la historia de su país
Characterization of rockfalls from seismic signal: insights from laboratory experiments
International audienceThe seismic signals generated by rockfalls can provide information on their dynamics and location. However, the lack of field observations makes it difficult to establish clear relationships between the characteristics of the signal and the source. In this study, scaling laws are derived from analytical impact models to relate the mass and the speed of an individual impactor to the radiated elastic energy and the frequency content of the emitted seismic signal. It appears that the radiated elastic energy and frequencies decrease when the impact is viscoelastic or elasto-plastic compared to the case of an elastic impact. The scaling laws are validated with laboratory experiments of impacts of beads and gravels on smooth thin plates and rough thick blocks. Regardless of the involved materials, the masses and speeds of the impactors are retrieved from seismic measurements within afactor of 3. A quantitative energy budget of the impacts is established. On smooth thin plates, the lost energy is either radiated in elastic waves or dissipated in viscoelasticity when the impactor is large or small with respect to the plate thickness, respectively. In contrast, on rough thick blocks, theelastic energy radiation represents less than 5% of the lost energy. Most of the energy is lost in plastic deformation or rotation modes of the bead owingto surface roughness. Finally, we estimate the elastic energy radiated during field scale rockfalls experiments. This energy is shown to be proportional to the boulder mass, in agreement with the theoretical scaling laws
Anatomy of the high-frequency ambient seismic wave field at the TCDP borehole.
International audienceThe Taiwan Chelungpu-fault Drilling Project (TCDP) installed a vertical seismic array between 950 and 1270 m depth in an active thrust fault environment. In this paper we analyze continuous noise records of the TCDP array between 1 and 16 Hz. We apply multiple array processing and noise correlation techniques to study the noise source process, properties of the propagation medium, and the ambient seismic wave field. Diurnal amplitude and slowness patterns suggest that noise is generated by cultural activity. The vicinity of the recording site to the excitation region, indicated by a narrow azimuthal distribution of propagation directions, leads to a predominant ballistic propagation regime. This is evident from the compatibility of the data with an incident plane wave model, polarized direct arrivals of noise correlation functions, and the asymmetric arrival shape. Evidence for contributions from scattering comes from equilibrated earthquake coda energy ratios, the frequency dependent randomization of propagation directions, and the existence of correlation coda waves. We conclude that the ballistic and scattered propagation regime coexist, where the first regime dominates the records, but the second is weaker yet not negligible. Consequently, the wave field is not equipartitioned. Correlation signal-to-noise ratios indicate a frequency dependent noise intensity. Iterations of the correlation procedure enhance the signature of the scattered regime. Discrepancies between phase velocities estimated from correlation functions and in-situ measurements are associated with the array geometry and its relative orientation to the predominant energy flux. The stability of correlation functions suggests their applicability in future monitoring efforts
- …
