5 research outputs found

    Tracking Treatment Response in Cardiac Light-Chain Amyloidosis With Native T1 Mapping

    Get PDF
    IMPORTANCE: Cardiac magnetic resonance (CMR) imaging-derived extracellular volume (ECV) mapping, generated from precontrast and postcontrast T1, accurately determines treatment response in cardiac light-chain amyloidosis. Native T1 mapping, which can be derived without the need for contrast, has demonstrated accuracy in diagnosis and prognostication, but it is unclear whether serial native T1 measurements could also track the cardiac treatment response. OBJECTIVE: To assess whether native T1 mapping can measure the cardiac treatment response and the association between changes in native T1 and prognosis. DESIGN, SETTING, AND PARTICIPANTS: This single-center cohort study evaluated patients diagnosed with cardiac light-chain amyloidosis (January 2016 to December 2020) who underwent CMR scans at diagnosis and a repeat scan following chemotherapy. Analysis took place between January 2016 and October 2022. MAIN OUTCOMES AND MEASURES: Comparison of biomarkers and cardiac imaging parameters between patients with a reduced, stable, or increased native T1 and association between changes in native T1 and mortality. RESULTS: The study comprised 221 patients (mean [SD] age, 64.7 [10.6] years; 130 male [59%]). At 6 months, 183 patients (mean [SD] age, 64.8 [10.5] years; 110 male [60%]) underwent repeat CMR imaging. Reduced native T1 of 50 milliseconds or more occurred in 8 patients (4%), all of whom had a good hematological response; by contrast, an increased native T1 of 50 milliseconds or more occurred in 42 patients (23%), most of whom had a poor hematological response (27 [68%]). At 12 months, 160 patients (mean [SD] age, 63.8 [11.1] years; 94 male [59%]) had a repeat CMR scan. A reduced native T1 occurred in 24 patients (15%), all of whom had a good hematological response, and was associated with a reduction in N-terminal pro-brain natriuretic peptide (median [IQR], 2638 [913-5767] vs 423 [128-1777] ng/L; P < .001), maximal wall thickness (mean [SD], 14.8 [3.6] vs 13.6 [3.9] mm; P = .009), and E/e' (mean [SD], 14.9 [6.8] vs 12.0 [4.0]; P = .007), improved longitudinal strain (mean [SD], -14.8% [4.0%] vs -16.7% [4.0%]; P = .004), and reduction in both myocardial T2 (mean [SD], 52.3 [2.9] vs 49.4 [2.0] milliseconds; P < .001) and ECV (mean [SD], 0.47 [0.07] vs 0.42 [0.08]; P < .001). At 12 months, an increased native T1 occurred in 24 patients (15%), most of whom had a poor hematological response (17 [71%]), and was associated with an increased N-terminal pro-brain natriuretic peptide (median [IQR], 1622 [554-5487] vs 3150 [1161-8745] ng/L; P = .007), reduced left ventricular ejection fraction (mean [SD], 65.8% [11.4%] vs 61.5% [12.4%]; P = .009), and an increase in both myocardial T2 (mean [SD], 52.5 [2.7] vs 55.3 [4.2] milliseconds; P < .001) and ECV (mean [SD], 0.48 [0.09] vs 0.56 [0.09]; P < .001). Change in myocardial native T1 at 6 months was independently associated with mortality (hazard ratio, 2.41 [95% CI, 1.36-4.27]; P = .003). CONCLUSIONS AND RELEVANCE: Changes in native T1 in response to treatment, reflecting a composite of changes in T2 and ECV, are associated with in changes in traditional markers of cardiac response and associated with mortality. However, as a single-center study, these results require external validation in a larger cohort

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival

    Role of Neuropilins in regulating macrophage function and the development of atherosclerotic plaques in the mouse

    No full text
    Background. Ischaemic heart disease is the leading cause of mortality worldwide and atherosclerosis is the underlying pathology in most cases. Macrophages are heterogenous inflammatory cells that play a central role in the development of atherosclerosis. As such, they are an attractive therapeutic target in preventing atherosclerotic plaque development. Neuropilins (NRPs) are cell- surface glycoproteins that were initially found to be essential for cardiovascular development and axonal guidance. Neuropilins are now known to be multi- functional co-receptors, and are expressed by macrophages. To build upon our current understanding of the molecular mechanisms underpinning macrophage involvement in atherosclerosis, I characterised the role of NRPs in modulating macrophage function and atherosclerotic plaque development. Methods. I generated mouse lines with myeloid-specific knockout (KO) of Nrp1 or Nrp2, on a pro-atherogenic background (Nrp1-KOMac,Apoe-/-,EYFP and Nrp2- KOMac,Apoe-/-,EYFP). These mice were fed high-fat diet (HFD) for 16 weeks before their aortas were removed, and plaques were characterised. This study was complemented by polarisation experiments, functional assays and transcriptome analysis, using Nrp1-KO or Nrp2-KO macrophages. Results. HFD-induced plaque development was significantly attenuated in both Nrp1-KOMac,Apoe-/-,EYFP and Nrp2-KOMac,Apoe-/-,EYFP mice, however the composition of their plaques differed. Plaques from Nrp2-KOMac,Apoe-/-,EYFP mice had features of increased stability, whereas plaques from Nrp1-KOMac,Apoe-/-,EYFP mice had features of reduced stability. Transcriptome analysis revealed that interferon signalling, chemotaxis and cholesterol efflux pathways were downregulated in Nrp1-KO macrophages, whereas NFÎşB signalling and chemotaxis pathways were downregulated in Nrp2-KO macrophages. Furthermore, M1 macrophage polarisation was enhanced in Nrp1-KO, but inhibited in Nrp2-KO, macrophages and MCP-1-guided migration was impeded in both Nrp1-KO and Nrp2-KO macrophages. Conclusions. I have demonstrated that macrophage-derived NRPs are pro- atherogenic, which likely results from their ability to positively regulate pro- inflammatory pathways and macrophage migration. Targeting NRPs expressed on the surface of macrophages could therefore offer a novel therapeutic approach for reducing the disease burden associated with atherosclerosis

    Intoxikationen

    No full text
    corecore