5,356 research outputs found

    Introducing a Human Activity Recognition Dataset Gathered on Real-Life Conditions

    Get PDF
    Cursos e Congresos, C-155[Abstract] Human activity recognition (HAR) has garnered significant scientific interest in recent years. The widespread use of smartphones enabled convenient and cost-effective data collection, eliminating the need for additional wearables. Given that, this paper introduces a novel HAR dataset in which participants had freedom in choosing smartphone orientation and placement during activities, ensuring data variability. It also includes contributions from diverse individuals, reflecting unique smartphone usage habits. Moreover, it comprises measurements from accelerometer, gyroscope, magnetometer, and GPS, corresponding to one of four activities: inactive, active, walking, or driving. Unlike other datasets, the collected data in this study were obtained from smartphones used in real-life scenariosThis work was funded by CITIC is funded by the Xunta de Galicia through the collaboration agreement between the Consellería de Cultura, Educación, Formación Profesional e Universidades and the Galician universities for the reinforcement of the research centres of the Galician University System (CIGUS), Xunta de Galicia/FEDER-UE (ConectaPeme, GEMA: IN852A 2018/14), MINECO-AEI/FEDER-UE (Flatcity: TIN2016-77158-C4-3-R) and Xunta de Galicia/FEDER-UE (AXUDAS PARA A CONSOLIDACION E ESTRUTURACION DE UNIDADES DE INVESTIGACION COMPETITIVAS.GRC: ED431C 2017/58 and ED431C 2018/49).Xunta de Galicia; ED431C 2017/58Xunta de Galicia; ED431C 2018/4

    Radiation hardness studies of neutron irradiated CMOS sensors fabricated in the ams H18 high voltage process

    Get PDF
    High voltage CMOS detectors (HVCMOSv3), fabricated in the ams H18 high voltage process, with a substrate resistivity of 10 Ω·cm were irradiated with neutrons up to a fluence of 2×1016 neq/cm2 and characterized using edge-TCT. It was found that, within the measured fluence range, the active region and the collected charge reach a maximum at about 7×1015 neq/cm2 to decrease to the level of the unirradiated detector after 2×1016 neq/cm2

    Bacterial outer membrane vesicles and vaccine applications

    Get PDF
    Vaccines based on outer membrane vesicles (OMV) were developed more than 20 years ago against Neisseria meningitidis serogroup B. These nano-sized structures exhibit remarkable potential for immunomodulation of immune responses and delivery of “self” meningococcal antigens or unrelated antigens incorporated into the vesicle structure. This paper reviews different applications in OMV Research and Development (R&D) and provides examples of OMV developed and evaluated at the Finlay Institute in Cuba. A Good Manufacturing Practice (GMP) process was developed at the Finlay Institute to produce OMV from N. meningitidis serogroup B (dOMVB) using detergent extraction. Subsequently, OMV from N. meningitidis, serogroup A (dOMVA), serogroup W (dOMVW) and serogroup X (dOMVX) were obtained using this process. More recently, the extraction process has also been applied effectively for obtaining OMV on a research scale from Vibrio cholerae (dOMVC), Bordetella pertussis (dOMVBP), Mycobacterium smegmatis (dOMVSM) and BCG (dOMVBCG). The immunogenicity of the OMV have been evaluated for specific antibody induction, and together with functional bactericidal and challenge assays in mice have shown their protective potential. dOMVB has been evaluated with non-self neisserial antigens, including with a herpes virus type 2 glycoprotein, ovalbumin and allergens. In conclusion, OMV are proving to be more versatile than first conceived and remain an important technology for development of vaccine candidates. - See more at: http://journal.frontiersin.org/Journal/10.3389/fimmu.2014.00121/abstract#sthash.MwqUyZQ1.dpu

    Enhancing Survival, Engraftment, and Osteogenic Potential of Mesenchymal Stem Cells

    Get PDF
    Mesenchymal stem cells (MSCs) are promising candidates for bone regeneration therapies due to their plasticity and easiness of sourcing. MSC-based treatments are generally considered a safe procedure, however, the long-term results obtained up to now are far from satisfactory. The main causes of these therapeutic limitations are inefficient homing, engraftment, and osteogenic differentiation. Many studies have proposed modifications to improve MSC engraftment and osteogenic differentiation of the transplanted cells. Several strategies are aimed to improve cell resistance to the hostile microenvironment found in the recipient tissue and increase cell survival after transplantation. These strategies could range from a simple modification of the culture conditions, known as cell-preconditioning, to the genetic modification of the cells to avoid cellular senescence. Many efforts have also been done in order to enhance the osteogenic potential of the transplanted cells and induce bone formation, mainly by the use of bioactive or biomimetic scaffolds, although alternative approaches will also be discussed. This review aims to summarize several of the most recent approaches, providing an up-to-date view of the main developments in MSC-based regenerative techniques

    Bearing assessment tool for longitudinal bridge performance

    Get PDF
    This work provides an unsupervised learning approach based on a single-valued performance indicator to monitor the global behavior of critical components in a viaduct, such as bearings. We propose an outlier detection method for longitudinal displacements to assess the behavior of a singular asymmetric prestressed concrete structure with a 120 m high central pier acting as a fixed point. We first show that the available long-term horizontal displacement measurements recorded during the undamaged state exhibit strong correlations at the different locations of the bearings. Thus, we combine measurements from four sensors to design a robust performance indicator that is only weakly affected by temperature variations after the application of principal component analysis. We validate the method and show its efficiency against false positives and negatives using several metrics: accuracy, precision, recall, and F1 score. Due to its unsupervised learning scope, the proposed technique is intended to serve as a real-time supervision tool that complements maintenance inspections. It aims to provide support for the prioritization and postponement of maintenance actions in bridge management.Authors would like to acknowledge the discussions with Marcos Pantaleón from APIA XXI, Ambher Monitoring Systems and Banobras S.N.C. This work has received funding from the European’s Union Horizon 2020 research and innovation program under the grant agreement No 690660 (RAGTIME Project) and No 769373 (FORESEE Project). This paper refects only the author’s views. The European Commission and INEA are not responsible for any use that may be made of the information contained therein. David Pardo has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No 777778 (MATHROCKS), the European POCTEFA 2014-2020 Project PIXIL (EFA362/19) by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra program, the Project of the Spanish Ministry of Science and Innovation with reference PID2019-108111RBI00 (FEDER/AEI), the BCAM “Severo Ochoa” accreditation of excellence (SEV-2017-0718), and the Basque Government through the BERC 2018-2021 program, the two Elkartek projects 3KIA (KK2020/00049) and MATHEO (KK-2019-00085), the grant "Artifcial Intelligence in BCAM number EXP. 2019/00432", and the Consolidated Research Group MATHMODE (IT1294-19) given by the Department of Education

    Disclosure of temporary exposures as permanent website applications through the patrimonial survey

    Get PDF
    In a context of web application in the field of the dissemination of cultural heritage, this article advances in a methodology for the optimization of points clouds obtained through the technology of Laser Scanner (TLS). Identifying the potential of TLS surveys as interactive models that allow the cultural heritage to be perpetuated over time. This point cloud optimization is developed with free software, focusing its exploitation on an interactive web application, which has made it possible to convert two temporary museum exhibitions into permanent exhibitions in virtual format. Developed in conjunction with the Museu d’Història de la Ciutat de Barcelona. The case study focuses on the Palau Reial Major, Gothic style, formed by the chapel of Santa Àgata (built in 1302, on the Roman wall) and Saló del Tinell (built between 1359 and 1370, on the Roman remains). Located in the Plaça del Rei, in the old town of Barcelona. In this application is very important the visual impact, it requires to represent a faithful model of the interior of the building, from the point of view of color and lighting, avoiding the transparencies of the model through a dense cloud of dots, without occlusions, this requires a great quantity of positions. This implies a clear methodology, using different techniques such as photographic proyection, given the complexity of lighting of the building, as much for the artificial lighting as for the lighting of the stained glass. In this process, there were 84 positions that provide greater density of points, which are optimized with free programs. The temporary exhibitions of the case studies, elaborated by the MUHBA in the Saló del Tinell are:Postprint (published version

    3D numerical simulation of slope-flexible system interaction using a mixed FEM-SPH model

    Get PDF
    Flexible membranes are light structures anchored to the ground that protect infrastructures or dwellings from rock or soil sliding. One alternative to design these structures is by using numerical simulations. However, very few models were found until date and most of them are in 2D and do not include all their components. This paper presents the development of a numerical model combining Finite Element Modelling (FEM) with Smooth Particle Hydrodynamics (SPH) formulation. Both cylindrical and spherical failure of the slope were simulated. One reference geometry of the slope was designed and a total of 21 slip circles were calculated considering different soil parameters, phreatic level position and drainage solutions. Four case studies were extracted from these scenarios and simulated using different dimensions of the components of the system. As a validation model, an experimental test that imitates the soil detachment and its retention by the steel membrane was successfully reproduced.The FORESEE project has received funding from the EuropeanUnion’s Horizon 2020 research and innovation program undergrant agreement No 769373
    corecore